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ABSTRACT

Modern networks face unprecedented challenges due to exponential growth in traffic
demands, driven by AI workloads in datacenters and the ubiquitous adoption of cloud services
across the internet. This dissertation addresses three critical challenges in network systems:
efficient scheduling of inference tasks, performance optimization in hybrid networks, and
memory-efficient load balancing in datacenters.

First, we introduce Nona, a stochastic scheduling framework that leverages queueing theory
to optimize task placement in datacenter environments. By employing randomized algorithms
and considering both network and compute constraints, Nona demonstrates multiple orders of
magnitude improvements in job completion times while maintaining implementation simplicity.
Nona proposes stochastic scheduling, in which the complexity of the scheduling problem is
moved to an offline phase. When handling jobs online, stochastic schedulers are oblivious to
the instantaneous state of the network and only rely on predetermined allocation probabilities
to make lightning-fast decisions. Second, we present LINC, an in-network coding solution
designed for hybrid backbone networks. Through comprehensive mathematical analysis and
simulation, we highlight the benefits of network coding in cases where no modifications of the
end-hosts are possible. Finally, we develop Sirona, a memory-efficient version of a reactive
subflow spraying mechanism suited for hardware deployment. We show that Sirona can
achieve competitive performance in homogeneous and heterogeneous datacenter networks
while keeping a low memory footprint.
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Chapter 1

Introduction

1.1 Motivation

Network traffic has grown exponentially in recent years, driven by the convergence of multiple

trends both within datacenters and across the broader internet. Within datacenters, the rise

of Artificial Intelligence (AI) workloads and the ubiquity of Large Language Model (LLM)

based solutions in modern industry products have led to unprecedented demands on network

infrastructure [3–7]. Outside of AI workloads, modern microservice architectures multiply

the number of network interactions needed to serve even simple user requests. Beyond the

datacenter, the internet backbone faces its own explosion in traffic as businesses of all sizes

shift their operations online, video streaming is now ubiquitous, and cloud services become

the default choice for both enterprises and individuals [8, 9]. For all these applications,

network latency is a critical Quality of Service (QoS) metric to minimize that must be tackled

across the lifetime of packets and applications.

At the scheduling level, systems must make fast and complex decisions about task

placement across thousands of machines. Current approaches often assume massively over-

provisioned networks and focus only on efficient compute resource utilization. However, the

network becomes the bottleneck for some new datacenters workloads, and cannot be ignored.
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As datacenter scale increases, heterogeneous deployments require network load balancers

to dynamically adjust to the network topology. Recent congestion control approaches have

shown that in-order delivery of packets is not an indisputable necessity, opening the door for

sub-flow-level load balancing methods. To see commercial deployments, these sub-flow-level

load balancing solutions must be simple, well-understood, and sufficiently memory-efficient

to be implemented in hardware.

Finally, outside of datacenters, backbone networks have seen the development of hybrid

networks that rely on fiber, satellite, and microwave links to support ultra-low latency

applications. While promising, these networks suffer from packet loss, eventually increasing

effective End-to-End latency.

1.2 Problem Definition and Goals

This dissertation addresses three fundamental challenges in modern distributed network

systems:

1. Inference Task Scheduling: How can we design scheduling systems that effectively

consider both network and compute limitations? Current scheduling approaches often

fail to account for networking constraints, leading to suboptimal performance.

2. Hybrid Networks Efficiency: How can we maximize hybrid backbone networks utilization

and throughput for latency-sensitive applications?

3. Load Balancing: How can we achieve dynamic, resilient, and efficient load balancing

across datacenter network topologies while minimizing memory overhead?

1.3 Contributions

This dissertation makes the following key contributions:

18



1. We introduce in chapter 2 Nona, a novel stochastic scheduling framework that uses

queueing theory to determine optimal task placement probabilities. Our approach

demonstrates the potential of using randomized algorithms for datacenter job scheduling,

both in terms of performance and implementation simplicity. We develop a networking

and compute model for inference jobs running on datacenter clusters to optimize place-

ment probability distributions and show methods to minimize expected job completion

time based on this model.

2. We present LINC in chapter 3, which shows the benefits of using an in-network coding

solution with no assistance from end-hosts. We provide a comprehensive mathematical

analysis of the system that matches our simulations to assist network operators in

deploying LINC.

3. We develop Sirona, a memory-efficient load balancing system that achieves high load

balancing performance while dramatically reducing memory requirements. Sirona is

based on RSS [2], on which it improves by significantly reducing memory footprint

while keeping competitive performances. We also extend RSS with a thorough analysis

of the critical parameters affecting its performance and propose alternatives based on

that analysis. At its core, Sirona combines insights from theoretical works on load

balancing problems with heuristic-based approaches to extract the best of both worlds.
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Chapter 2

Nona: A Stochastic Congestion-Aware

Job Scheduler for Real-Time Inference

Queries

2.1 Introduction

The compute and latency requirements of emerging online services, such as ChatGPT [10]

inference requests, require dividing the workload across multiple datacenter servers [11]. As

a result, job schedulers must efficiently distribute user-facing online Deep Neural Network

(DNN) inference queries by meticulously considering computation resources, network capacity,

and congestion while making fast real-time scheduling decisions.

To address this challenge practically, current job scheduling techniques rely on approximate

representations of applications and deploy point solutions. They also depend on collecting

real-time statistics about the datacenter, such as the status of currently running jobs or

the instantaneous load of compute resources. However, accurately measuring the queue

occupancies of network switches in a cluster in real-time is nearly impossible due to the

bursty nature of datacenter traffic [12, 13]. Thus, the state-of-the-art job schedulers employ
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heuristic-based approaches to focus on the compute requirements of jobs, either ignoring the

impact of network congestion completely [14–16], fitting a network cost model from past

executions [17–20], or relying on the job to provide its networking demand [21].

On the other hand, queueing-theoretic approaches have the potential to capture network

congestion, but extending today’s solutions to structured DNN jobs breaks the independence

assumptions about the arrival processes of data transfers in the network queues. Therefore,

applying them to datacenter workloads presents two significant challenges. First, the Directed

Acyclic Graph (DAG) structure of today’s online queries induces several locality dependencies.

DNN’s DAGs are composed of tens to hundreds of compute operations (or tasks) that use the

outputs of their parent tasks as inputs; distributing two consecutive tasks on different compute

resources introduces communication costs and requires carefully considering the impact of

data dependencies between the tasks on network resources and queues. Second, successive

tasks in a DAG introduce stochastic dependency in the arrival processes of individual tasks:

the arrival process of the last task of a DAG depends on the service distributions of all the

other tasks. Queueing models usually assume Poisson arrivals of jobs automatically result in

Poisson arrivals of every task in each job’s DAG. Given the depth of DAGs of today’s DNN

inference models, this assumption is not accurate. Therefore, today’s queueing-theoretic

approaches cannot be used out of the box for jobs with deep, complex DAGs. Prior papers

avoid these challenges either by considering individual, isolated jobs [22] or by excluding

DAG parallelism [23–25] and ignoring network congestion. To highlight the prohibitive

complexity of network-aware scheduling, the recent AlpaServe [26] paper proposed a simple

queueing-theoretic model to capture the communication overhead of scheduling inference

queries. However, due to the complexity of their model, they fell back to a heuristic-based

solution [26, Section 4.2].

We introduce in this chapter the concept of stochastic scheduling: every task to server

allocation is decided randomly, by sampling from a predetermined probability distribution.

Finding the right probability distribution can be done asynchronously from the operation of
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the system (e.g. before the system is started), and updates to these probability distributions

can be computed while the system is running. Stochastic scheduling has the benefit of

allowing lightning-fast decisions at the scheduler, with a parallel, offline process solving the

scheduling problem.

Based on stochastic scheduling, we propose Nona, a principled framework for distributing

latency-sensitive inference jobs while considering both compute and communication resources

of a cluster. Nona has three novel contributions. First, Nona uses an optimization formulation

based on a flow network view [27, Chapter 3, 5.4] of the cluster that uses the well-established

Pollaczek–Khinchine (PK) formula [28, 29] to predict network congestion and determine a

series of stochastic decisions minimizing the average expected job completion time (JCT).

Nona’s optimization handles locality dependencies in the DAGs, building on prior work on

networks of queues [30] to compute cluster settings.

Second, Nona’s stochastic scheduler uses the solution found by the optimization to perform

placement decisions in real time. This stochastic scheduler is lightweight, fast, and easy

to implement (adding Nona’s scheduler to the Apache Spark framework [31] requires ≈ 20

lines of Scala code): for each task in a job’s DAG, Nona randomly samples a server from a

pre-computed probability distribution obtained from solving the optimization.

Nona uses queueing theory to determine this series of stochastic decisions based on

the steady-state properties of the workload. Consequently, Nona’s optimization problem

concentrates most of the complexity of our solution, leaving only lightweight operations

to Nona’s online scheduler. We argue that instead of developing complex online heuristic

algorithms, latency-sensitive scheduling schemes should shift the complexity into an offline

phase to enable making fast online decisions. This principle allows for solving the optimization

and generating the corresponding probability distributions offline before running the system

and adjusting them during operation without downtime.

Nona’s optimization formulation leverages cloud providers’ ability to continuously analyze

traffic patterns offline and estimate each DAG’s average arrival rate. In new deployments
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where the arrival rate is unknown or volatile, cloud providers may solve Nona’s optimization

with a set of predicted arrival rates and adjust the predictions over time. Our evaluation in

section 2.5.4 demonstrates that Nona is robust to changes in arrival rates of up to ±40%.

Moreover, cloud providers may precompute multiple scheduling strategies corresponding to

multiple arrival rate scenarios so that Nona’s scheduler uses a lookup table that best matches

the current arrival rate conditions. Overall, Nona requires strictly less live state information

than state-of-the-art heuristics [14–21, 26, 32].

Finally, Nona introduces a novel graph contraction procedure to reduce the search space

and complexity of the optimization formulation without changing the optimal solution. This

graph contraction procedure enables Cloud providers to execute Nona’s offline optimization

formulation within a few seconds.

While this chapter focuses on inference queries, the methods developed here apply to any

system handling structured queries submitted by a wide variety of independent customers.

Inference queries of models that cannot fit on a single hardware accelerator are obvious

candidates for Nona, since its main actionable lever relies on splitting up queries’ tasks

across different accelerators. Other inference models can however also benefit from the

reduced memory usage on each single accelerator to increase batch sizes[33]. Beyond inference

queries, other distributed computing protocols, rely on very low latencies while potentially

benefiting from this divide-and-conquer model approach. For example, only providing a

subset of all operations and data is a desirable property in web3 approaches, in particular for

networking [34]. Furthermore, the concept of stochastic scheduling can be extended to other

contexts such as hardware chips with tight scheduling deadlines. Overall, we propose in this

chapter an example application to showcase the benefits of stochastic scheduling and provide

the full corresponding solution.

To evaluate Nona, we implement our optimization problem and conduct extensive simu-

lations comparing its performances to state-of-the-art schedulers such as Decima [16], and

Spark [31], to an Expert scheduler, and to two custom lightweight congestion-oblivious sched-
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ulers (Random and Opportunistic). Using real-world DNN models (GPT-2 [35], DenseNet [36],

VGG [37], AlexNet [38] and ResNet18 [39]), we demonstrate that Nona improves the av-

erage JCT by multiple orders of magnitude compared to Spark (56×), an Opportunistic

scheme (180×), a Random scheme (202×), and Decima (350×), while being within 10% of

an ideal Expert solution. Nona also improves 99%-tile tail JCT by 77×, 21×, 119×, and

81× respectively, compared to the same schemes. We then evaluate the impact of network

bandwidth on Nona’s performance and find that our results remain consistent for various

network bandwidths. Finally, we study Nona’s scalability and show that the execution time

of solving our optimization problem is 30,000–245,000× faster than Decima’s training time.

Although both Decima and Nona have an offline phase, Nona is explainable, faster, and

results in better performance.

2.2 Motivation

A significant part of current datacenter traffic increases is driven by ML workflows [19].

Newer DNN models (e.g., recommendation models [40], large language models [10]) spend an

increasing fraction of their runtime transmitting data on the network [41]. This is due in part

to their sizes, which prevent users from running the entire model on a single accelerator, even

for inference requests. For inference requests in particular, the end-to-end serving latency

is critical. Therefore, minimizing network latency between distributed tasks in the DAG is

equally critical.

2.2.1 Example

In this section, we explain how heuristic-based, congestion-oblivious schedulers can make

poor scheduling decisions because of their inability to distinguish the network congestion

implications of compute-equivalent distribution strategies. While we use a generic Congestion-

Oblivious Schedulers in this section, our conclusions hold for other state-of-the-art scheduling
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Figure 2.1: (a) An example of a DAG with four tasks. (b, c) sample allocations. Tasks 2 and
3 are large and require 10 seconds to complete. Task 2 requires more data from the output of
task 1 than task 3.

systems, such as Decima [16], Optimus [17], Gandiva [18], Tiresias [19], Pollux [20], Themis [21],

Spark [31], INFaas [42], AlpaServe [26] and DRM-DQL [43].

Sample job

Consider a job f summarized by the following operations:

f : (A,B) 7→ det(A+B) + det(r(A+B)) (2.1)

Where for any square matrix M , r(M) is a sparse function setting all elements of M to zero

except for a single random one on each row, and det(M) is the determinant of M . Figure 2.1a

shows the DAG corresponding to this job with four tasks: (1) Summing A and B, (2) Taking

the determinant of that sum, (3) Taking the determinant of the sparse version of the sum, and

(4) Summing the outputs of (2) and (3). The top branch of the DAG has larger transfer sizes

than the bottom branch (all of A+B has to be transferred instead of just a sparse version),

and the middle tasks require more compute time than the first and last tasks (determinants
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are more computationally expensive than sums). The duration of each task and the amount

of data each task requires from the previous tasks are indicated next to the nodes and edges,

respectively.

Single job scheduling

Consider a scenario with a cluster of two servers, a and b. We start by studying DAG

distribution strategies for a single occurrence of f . Today’s congestion-oblivious schedulers do

not include any notion of topology or links between servers. When a job is distributed over

multiple servers, it might pay a fixed penalty corresponding to various overheads, such as the

startup time of a Java Virtual Machine (JVM) on that server. Moreover, congestion-oblivious

schedulers tend not to employ cost functions that scale with the amount of data that needs

to be transmitted between servers. Their outputs focus on the number of servers allocated

to each task and the order in which different tasks should be executed. They are, therefore,

unable to differentiate between two allocations with equivalent compute times but different

network footprints.

As an example, Figures 2.1b and 2.1c show two possible task allocations by today’s

congestion-oblivious schedulers. Assuming servers a and b are equivalent, these two distribu-

tion strategies will have the same amount of compute on each server: place three tasks on

one server (equivalent to 1 + 10 + 1 = 12 ms compute time), and place the remaining task

on the other server (10 ms compute time). However, allocation 1 in Figure 2.1b transfers

200 MB of data. On an 80 Gbps link, that represents 20 ms, or about 60% of the total JCT.

In comparison, allocation 2 in Figure 2.1c requires transferring only 20 MB of data across

the network corresponding to 2 ms on the same 80 Gbps link, or about 15% of the total JCT

and 10× less than allocation 1. As a result, even though the compute scheduling of both

allocations is equivalent, their corresponding network traffic is vastly different. In practice,

today’s congestion-oblivious schedulers end up randomly alternating between these strategies.

In contrast, Nona considers the size of data transfers on the DAG together with the
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Low 50% 50% 20% 80%
Medium 50% 50% 50% 50%

High 50% 50% 80% 20%

Table 2.1: Allocation statistics for different schedulers.

available network bandwidth. As a result, Nona specifies which groups of tasks should run

together on the same server instead of just the number of servers to allocate to each task.

Consequently, Nona selects allocation 2 every time because it results in fewer bytes being

transferred between the servers.

Scheduling streams of jobs

The previous example only considered a single job f . We now consider a more realistic case

where a stream of users submits inference requests for f on different input data. State-of-the-

art congestion-oblivious schedulers cannot distinguish between allocations 1 and 2. Thus,

they end up load balancing between the two, as shown in Table 2.1. The same strategy

is applied regardless of the resulting load on the link and the cluster’s total network load.

Instead, Nona captures queueing delays in its optimization formulation and makes scheduling

decisions based on the load on the cluster. For instance, Nona sometimes decides not to

distribute the job if distributing results in worse performance. As shown in Table 2.1, this

decision depends on the expected average load of the cluster: when the network is lightly

loaded, Nona chooses to distribute the computation and to use the network most of the time.

When the network is busy, Nona mostly refrains from distributing f , to avoid adding to the

network congestion and suffering from too much network delay.
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This example highlights a significant potential source of gains over state-of-the-art

congestion-oblivious schedulers. By incorporating network costs into the decision-making

process, Nona is able to reduce network congestion and JCT.

2.2.2 Stochastic Scheduling

In this section, we argue for the benefits of making scheduling decisions based on pre-

determined probability distributions instead of complex heuristics that consider instantaneous

state information about the cluster. We showed in the previous section that past works

avoided including networking in their decisions leading to potential performance hits.

In [22, Figure 3], authors present an optimization formulation for placement of training

and inference workloads. That problem looks at the placement of a single job running in an

isolated section of a cluster. The optimization variables used in that problem are therefore

binary: for the considered job, either place a task on a server, or do not. On the other

hand, in this chapter, we consider streams of jobs; a natural extension of that optimization

problem therefore consists of considering stochastic variables. In practice, this means that the

optimization problem answers the question “how often should a task be scheduled a certain

way”, instead of building a complex state machine.

From a modeling perspective, using stochastic variables enables a mean-field analysis of

the system: if a task appearing every second on average has a 20% chance of being scheduled

on a given node a, then in average a will run 20% of these tasks, according to the law of

large numbers. As a direct implication, this means that any solution to the problem, whether

feasible or not, whether optimal or not, yields an expected compute load and network demand.

From an implementation perspective, stochastic schedulers have the benefit of effectively

displacing the complexity of the problem to an offline phase. When a new job arrives in the

system, the scheduling decision consists of a series of samples from precomputed probability

distributions. Practically speaking, that means Nona only takes a couple of lines of code to

implement: for each request, load the corresponding distribution, sample, and assign the jobs
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to the resulting servers. Determining these distributions is critical–as we show in section 2.5,

but can be done offline. To show the potential of stochastic scheduling, we make the decision

to include no instantaneous state information in the process: the choice of the distributions

depends only on generic information about the cluster, and on specifics of the inference

request’s model.

One could argue that, with the proper lens, all schedulers can be analyzed as stochastic

schedulers. Indeed, on a coarse timescale, running a scheduler on a wide range of scenarios,

and grouping jobs of the same class together, we can draw statistics about the scheduling

strategy used by the scheduler. However, as we show in section 2.5.8, summarizing a heuristic-

based scheduler by its long-term statistical behavior loses too much information and yields

both a different behavior and poor performance results. We therefore consider stochastic the

schedulers that only rely on probability distributions to make decisions, or, put differently,

we consider stochastic schedulers to be schedulers with an inherent random aspect.

2.3 Nona’s System Description

In this section, we first provide some background on tools used in Nona’s system analysis,

then an overview of Nona’s high-level design (§2.3.2) and relevant assumptions (§2.3.3). Then,

we explain Nona’s optimization formulation (§2.3.4). Finally, we describe two techniques to

solve Nona’s optimization for real-world jobs (§2.4.1).

2.3.1 Background

subsectionNona’s Design Principles Nona is built upon the following theorems and assump-

tions.
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Networks of Queues

Jackson first introduced Jackson networks in 1963 [30]. They consider a system where jobs or

customers have to visit a set of service centers or servers in a given order. The set of service

centers and the order is specific to each job. It is assumed that each customer visits service

centers on their list, getting in line after arriving at a new service center—often in a FIFO

manner. Arrivals of customers follow a Poisson process, and service times are exponentially

distributed. By considering average transition frequencies between service centers, the system

is summed up by the arrival frequency and a Markov process, with the number of customers

in each queue serving as state, and the frequency matrix of transition from each pair of

servers as transition probabilities. Jackson deduces the equilibrium distribution of queue

occupancy. In the datacenter setting, however, jobs are not bound to specific service centers

and can be served by multiple service centers at the same time according to their DAG. For

this reason, we cannot directly use the equilibrium distribution.

[44] extends this model to multi-commodity flows. Multiple independent flows, each

composed of a set of customers as in a Jackson Network, compete for the same communication

resources; a result for the average waiting time spent by a packet in the network is derived.

Arrival and Service Assumptions

A similar result to the central limit theorem justifying the widespread appearance of the

normal distribution exists for arrival processes.

Theorem 1 ([45, Proposition 11.2.VI]) The superposition of a large number of indepen-

dent sparse renewal processes leads to a Poisson process in the limit.

As an example, in the case of a datacenter, customers submitting inference requests using

the same model can be considered independent. In this chapter, we assume that the arrival

process of each class of jobs (defined by its DAG) follows a Poisson process. We also assume

that the service time of any task, both in compute and communication queues, is a constant:
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the time variation between multiple executions of the same tasks is small compared to the

runtime of typical datacenter tasks [46].

Kleinrock’s Independence Assumption

Consider a simple Jackson Network with two service centers. Consider two subsequent

customers c and c+ 1, and set time 0 as the time at which customer c arrives at the network.

Let i1 be the inter-arrival time at the first service center, and s1 be the service time for

customer 1 at service center 1. Consider finally i2, the inter-arrival time between those two

customers at the second service center. i2 is lower bounded by s1 − i1 which can be strictly

positive, i.e. the arrival process at the second service center is not Poisson.

In [47], Kleinrock shows that when the traffic in a queueing system is composed of a

large number of independent users, each generating flows of dependant tasks, the inter-arrival

time between packets of the compound flow follows an exponential distribution—i.e. the

dependency between tasks of the same user is lost and arrivals at the second service center

can be considered to be Poisson.

Pollaczek–Khinchine (PK) Formula

[28, 29] The PK formula gives the mean waiting time and mean time spent in an M/G/1

queue (a queue with a single service center or processing unit, Poisson arrivals, and general

service time distribution).

Theorem 2 (PK) The time W ′ spent waiting in the queue of the system before being served

is a function of the first two moments of the service time distribution S and the arrival rate

λ of the Poisson process:

W ′ =
λE [S2]

2 (1− λE[S])
. (2.2)
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For multiple classes of clients, with respective arrival and service rates λj and Sj, we define

ρj = λjE[Sj], the contributions to the system load from individual classes of clients, and

ρ =
∑

j ρj, the total load of the system. In this chapter, the service time of compute tasks is

considered constant for a given task, and we use µj = 1/E(Sj) to denote the service rate of

that task. Using [48], we get:

W ′ =

∑
j λj/µ

2
j

2(1−∑j λj/µj)
. (2.3)

2.3.2 High-level Design of Nona

Nona consists of two components: first, an offline optimization formulation that minimizes the

JCT of a series of jobs distributed in a cluster with stochastic allocation strategies. Nona’s

formulation uses the service provider’s expected load of network and compute resources in

the cluster to determine the expected queueing delays associated with different scheduling

options. To do so, Nona uses the PK formula(see section 2.3.1) to compute the expected

JCT corresponding to each job’s DAG. This allows the formulation to capture the tradeoff

between gains stemming from running tasks in parallel and additional network delay due to

ensuing network congestion. The solution resulting from the optimization is a probability

associated with each scheduling decision.

The second component to Nona is its stochastic scheduler that uses the solution found by

the optimization to perform placement decisions in real time. Consequently, Nona’s offline

optimization problem contains most of the complexity of our solution, leaving only lightweight

operations to Nona’s online scheduler. Tasks are then executed on their chosen server in the

order defined by the DAG.
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2.3.3 System Model and Relevant Assumptions

To build our optimization formulation, we consider a stream of jobs to be executed on a cluster.

Servers and links in this cluster are represented as queues with deterministic service times.

Each server has a compute rate which corresponds to the number of compute operations it

performs per second. We assume each server works on a single compute task at any given

instant and has an infinite buffer to store pending tasks while it is busy. We divide the stream

of jobs by class, where each class is defined by a DAG. In practice, for DNN inference jobs,

each class represents a different DNN model.

We assume a large number of independent users submit inference requests to the cluster,

thus following a Poisson arrival process [45, Proposition 11.2.VI]. Given that task completion

times are not exponentially distributed, and given that jobs in datacenter settings are not

bound to a single server and can be split across different servers, we cannot directly use

results from Jackson Networks [30]. However, we use a similar flow network [49] approach

and take advantage of the PK Formula to estimate buffer delays.

Today’s datacenters interconnect all servers through a hierarchical topology, such as a

Fat-Tree network [50]. Given that transport protocols adapt to the speed of the slowest

link on the path regardless of the number of hops, we model the network topology with one

bottleneck link. Our optimization problem can be extended to include network queueing

delays on all links, but only yields marginal performance gains.

2.3.4 Optimization Problem

We start this section by outlining the high-level abstraction of our optimization problem, as

follows:

Minimize: Average job completion time (I)

subject to: Communications, Computing, Flow, and Scheduling Constraints (II)-(XII) ,
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(I) is the objective function to be minimized, (II), (III) and (VII) are the main constraints of

this problem, and (IV)-(VI), (VIII)-(XII) define auxiliary variables, as we detail below. .

Let J be the set of job classes, defined by their operation DAG Gj (tasks T j, data

dependencies Dj). For any DAG j ∈ J , let βj be the average arrival rate of jobs with DAG

j, and τ j be the average JCT of all requests corresponding to job j.

(I) We define our objective function to be
∑

j∈J βjτ
j. This objective function captures

the average completion time of jobs, weighted by the arrival rate of each job class.

Stochastic scheduling.

A scheduling decision is a mapping of tasks onto servers, or equivalently a partition of the

tasks in each DAG along with a mapping associating each part to a server. We frame our

decision variables based on this graph partition view: we first divide the DAGs into subgraphs

along bottleneck nodes (i.e., nodes that are on every root-to-sink path) and then define

probability distributions on partitions of these subgraphs.

More specifically, for a subgraph with source t0, sink tm, and intermediate tasks T =

{t1, . . . , tm−1}, let π be a partition of T , and let πk and πl be parts of π. Let Ωt be the set of

all possible triplets (π, πk, πl) for the subgraph with root t. Ωt represents the set of possible

mappings for the source and the intermediate tasks of the subgraph. Let θt[(π, πk, πl)] be

a probability distribution on Ωt. θt[(π, πk, πl)] corresponds to the probability of choosing

mapping (π, πk, πl) where the subgraph’s source is placed on the same server as tasks in πk,

the intermediate tasks are grouped according to π, and the subgraph’s sink is placed on the

same server as tasks in πl. To illustrate these notations, we show in Figure 2.2b a sample

partition π, with three parts, π0, π1, and π2. The contracted root task (see section 2.4.1)

corresponding to tasks 1 + 2 + 3 is placed on the same server as tasks in π2, i.e. tasks 12 to

15. Similarly, the sink task is placed on the same partition as tasks in π1, i.e. tasks 7 and 11.

This corresponds to choosing the mapping (π, π2, π1).

To completely characterize an allocation strategy, we must also determine the placement
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of the roots of the DAGs. We notice that to obtain a Pareto-efficient solution, the average

load of every server should be equal. Therefore we set the assignment of the roots of the jobs

to uniform distributions.

The assignment distributions θt[(π, πk, πl)] are our optimization variables. They are valid

probability distributions, hence:

(II) They sum up to 1: ∑
Ωt

θt[(π, πk, πl)] = 1.

(III) And they are positive:

θt[(π, πk, πl)] ≥ 0.

Communication cost.

Let b(t,t
′) be the amount of information needed by each task t′ from one of its predecessors

t, and µ be the capacity of the bottleneck link. Let also Rj be the set of subgraph roots,

P(t) and S (t) respectively be the set of predecessors and successors of t, and by extension

(t, t′) ∈ π the event “t and t′ belong to the same part of partition π". Each job arrival produces

a set of communication arrivals, corresponding to edges in the DAG that are distributed over

different servers. From job arrivals, we derive the average data transfer arrival and service

rates (respectively λ(t,t′) and S(t,t′)), and deduce a stability constraint on the link’s load (ρ),

the average queuing delay at the link (ϕ), and the average total communication delay (c(t,t′)):

(IV) Arrival Rates:

λ(t,t′) =
∑
Ωt

βjθt[(π, πk, πl)] ·


1(t′ /∈ πk) if t∈ Rj

1(t /∈ πl) if t’∈ Rj

1((t, t′) /∈ π) o.w.

.
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(V) Service time:

S(t,t′) =
b(t,t

′)

µ
.

(VI) Link load:

ρ =
∑
j∈J

∑
t∈Dj

∑
t′∈S (t)

λ(t,t′)S(t,t′).

(VII) Stability condition:

ρ < 1.

(VIII) PK formula:

ϕ =

∑
j∈J

∑
t∈Dj

∑
t′∈S (t)

λ(t,t′)S
2
(t,t′)

2 (1− ρ)
.

(IX) Communication delay:

c(t,t′) = ϕ+ S(t,t′).

Cost propagation.

Let pt be the number of operations required by each task t ∈ T j and ν the compute power

of servers. Let N (t) the root node coming after t in Rj, sorted in topological order. We

independently compute the average completion times for each subgraph. First, we compute

χt,k,l[(π, πi)], the time required for all branches in part πi of π to complete given that (π, πk,
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πl) was chosen, for every partition. Each task’s completion time is given by the sum of (i)

its compute time and (ii) its communication time before and after itself, if any. Since all

tasks in part πi run on the same node, they cannot run in parallel and the completion of πi

is given by the sum of individual task completion times. Then we average those times to

κt, the average time between the completion of the source and sink of a subgraph. Different

parts run on separate servers, therefore the completion time of all the parts is given my the

maximum of the completion time of individual parts. This formula could include another

source of queueing delay for the access to a compute resource. We choose to omit it since this

cost is paid once by every part and thus does not change the optimal assignment distributions

while simplifying the optimization problem. Finally, we propagate the completion times of

individual subgraphs to obtain the average JCT:

(X) Conditional branch completion time:

χt,k,l[(π, πi)] =
∑
t2∈πi

∑
t1∈P(t1)

[
pt

′

ν
+ 1(t2 /∈ πi)c(t1,t2) + 1(t1 = t ∧ i ̸= k)c(t1,t2)

]
+ 1(i ̸= l)

∑
t1∈πi|(t1,N (t))∈Dj

c(t1,N (t)).

(XI) Subgraph completion time:

κt =
∑
(π,πk)

θt[(π, πk, πl)]max
πi∈π

{χt,k,l[(π, πi)]}+
pN (t)

ν
.

(XII) JCT: τ j = pt0

ν
+
∑

t∈Rj κt.

Due to equations (IV, VIII, XI), the objective can at most be reduced to a geometric

fractional function in simple cases, hence Nona’s optimization formulation is not convex. We

discuss practical considerations to approximate the optimal solution in the following section.
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Figure 2.2: (a) Contraction procedure on a sample graph. (b) Summary of graph partition
notations.

2.4 Practical Solving Considerations

2.4.1 Search Space Reduction

Scheduling jobs while taking into account the network is not a convex problem. A simplification

of Nona’s problem on small DAGs yields a geometric fractional objective function, with equality

constraints on posynomials; the full version is even more complex. We introduce two novel tech-

niques to reduce the search space of the optimization formulation. Note that the last technique

is already reflected in the formulation presented in section 2.3.4 through the choice of variables.
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DAG Contraction.

First, we notice that the size of the search space scales with the number of tasks in the

DAGs. Depending on the DAG, some tasks need to be executed sequentially. Consequently,

executing sequential tasks on different servers brings no benefit since they cannot be run in

parallel. We use this observation to contract edges with sequential endpoints into a single

node.

However, contraction needs to maintain correct task dependency. For instance, only

isolated edges—subsets of the graph limited to a single input and output—may be contracted.

Otherwise, the resulting graph would not faithfully represent dependencies between tasks

and would present unnecessary idle periods.

The following contraction procedure leverages this insight to keep only edges whose

endpoint might gain from parallel execution: as long as the DAG can be further contracted,

contract all edges a → b where all input nodes of b are also input nodes of a, and all output

nodes of a are also output nodes of b. More rigorously, given G(T ,D) a graph to be contracted,

with nodes T and edges D, the set of edges to be contracted in a contraction step is given by:

C =
{
(a, b) ∈ D | ∀n ̸= a, (n, b) ∈ D =⇒ (n, a) ∈ D,

∀n ̸= b, (a, n) ∈ D =⇒ (b, n) ∈ D
}

Figure 2.2a illustrates this contraction procedure. Edges to be contracted in the next

step are highlighted in green. Some edges seem contractable but are not; we highlight them

in yellow and show the edges preventing them from being contracted in red. For example,

contracting the edge between nodes 4 and 5 would lead to node 8 waiting for node 5 to

complete before starting, a dependency not present in the initial graph. As shown by the

bottom branches (nodes 12 to 15), multiple rounds can be necessary to ensure the graph is

fully contracted.
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Relative Assignments.

The second technique we use takes advantage of the relative assignments between tasks and

servers. In particular, we argue that the critical question the optimization problem should

answer is not which specific task should be placed on which specific server. Rather, the

assignment decision can be reduced to a set of relative decisions: which tasks of a job should

be grouped together on the same server.

Therefore, Nona’s optimization uses θt[(π, πk, πl)] to group tasks together on an arbitrary

server, instead of looking at which specific server should host a given task. Note that relative

assignment makes the optimization formulation independent of the number of servers, thereby

enabling Nona to scale to large clusters. Our evaluations demonstrate this highly desirable

feature in Section 2.5.

Compute congestion

By a symmetry argument, we notice that all servers should have the same compute load.

Indeed, any load imbalance between servers is not Pareto optimal: as shown by the PK

formula, the queueing time for M/G/1 queues is supra-linear in the load. For example, in a

cluster of two servers, an allocation with 51% of the load on the first server and 49% of the

load on the second server could be strictly improved by switching 1% of the demand to the

second server. The 1% added traffic will increase the queueing time at the second server less

than the reduction at the first server.

In our case, ensuring equal load can be done by scheduling the first task of each job

at random, according to the relative computation power of the servers in the cluster. In

cases where all the servers have the same compute capacity, this corresponds to a uniform

distribution of the first task.
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2.4.2 Search Space Size Characterization

In this section, we derive a loose upper bound to the size of the sample space of Nona’s

optimization problem. The size of the problem is proportional to the size of the search space,

thus the solving time depends directly on it. While large, the size of the search space Γ is

tractable. The problem scales linearly with the number of roots and is independent of the

number of servers in the cluster.

Consider a subgraph with root t, and bt parallel branches between source and sink. The

size of the sample space Ωt for this subgraph is given by the number of pairs (π, πk) where π

is a partition of [[1; bt]] and πk is the index of the chosen part in π or −1 if no part is chosen.

Let Bb be the number of partitions of a set of size bt, also known as a Bell number. Thus,

using [51]:

|Ωt| =
∑

partition π of [[1;bt]]

(|π|+ 1)

≤ Bb(bt + 1)

≤
(

0.792bt
ln(bt + 1)

)bt+1

≤
(

bt
ln(bt)

)bt+1

(2.5)

Sample space sizes in different subgraphs are independent of each other, thus:

|Γ| =
∑
j∈J

∑
t∈Rj

|Ωt|

≤
∑
j∈J

∑
t∈Rj

(
bt

ln(bt)

)bt+1

(2.6)
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2.4.3 Numerical Approximation of Optimal Solution

We initially attempted to solve Nona’s optimization formulation using traditional gradient

descent methods, as well as more recent first-order and second-order methods implemented in

Keras [52] (Among others: Adagrad [53], Adadelta [54], Adam [55, 56], FTRL [57]), but these

methods are not efficient to solve constrained problems. While these methods were developed

with nonconvex Machine Learning tasks in mind, they do not deal with constrained problems

well. In our case, they struggled with validity constraints: when constraints ( II, III) are

satisfied, the gradient of the corresponding penalty is equal to 0, and the overall gradient

points towards decreasing all probabilities simultaneously. Adding line search [58] on top of

the optimizers to avoid oscillating around the frontiers of the feasibility set was of no help.

We default to an explicit evaluation of the loss function on a subset of the feasible set for

distributions with discrete probability masses. As shown in section 2.5, while this generates

approximate solutions to the optimization results, the resulting distributions yield competitive

scheduling policies. Monte Carlo approaches, or more elaborate searches of the feasible set

could bring solutions closer to the optimum, but we leave their exploration and evaluation to

future work.

2.5 Evaluations

2.5.1 Methodology

To evaluate Nona, we augment the event-based simulator in Decima [16] to become network-

aware. The simulator takes the following input parameters: (1) a series of DAGs, each

corresponding to a class of jobs, (2) an average arrival rate for each job, and (3) the cluster

properties such as the number of servers, network capacity, and compute capacity per server.

Upon every task’s arrival or departure, the simulator places the subsequent available tasks

on servers according to the scheduling policy of the evaluated scheme. Finally, the simulator
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reports statistics about job and task completion times.

Workloads.

We consider five classes of inference jobs constructed from GPT2 [35], Densenet121 [36],

VGG16 [37], AlexNet [38], and ResNet18 [39], for which we retrieve jobs’ DAGs using

PipeDream’s [59] profiling tool. We then contract each graph as described in section 2.4.1.

We report model characteristics in Table 2.2, including the number of tasks in each DAG

before and after contraction. Our contraction procedure reduces the number of tasks by up

to a factor of 107, reducing the search space by similar factors. Some models, such as Alexnet

and VGG are reduced to a single node by our contraction procedure. This indicates that

their operations graphs are sequential with no model parallelism opportunities.

Model Size (MB) Layers # of tasks in the DAG
Pre-Contraction Post-Contraction

GPT2 487 164 178 40
Densenet 31 369 429 4
VGG16 528 40 41 1
Alexnet 233 22 23 1
Resnet18 45 61 71 10

Table 2.2: Properties of DNNs used in evaluating Nona.

To simulate a realistic multi-tenant cluster, we generate a series of background compute

and communication jobs. Each background compute job consists of a single task in its

DAG, with zero communication demand. Each background communication job has zero

compute demand. These jobs’ arrival rates and service requirements are chosen to simulate a

steady arrival of light background operations in a cluster. Empirically, we choose the ratio of

inference-to-background arrival rates to be 100:1.

Compared Schemes.

We simulate the following schemes:

Decima [16]: Decima is a reinforcement-learning scheduler to make scheduling decisions
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based on instantaneous information about the state of the cluster. The model is congestion-

oblivious: its training environment does not consider network delays. We use a DNN model

trained on SQL queries provided by the authors.

Spark’s Fair Scheduler : this scheme shares the compute resources of the cluster fairly

between all active jobs. It also requires instantaneous information about the state of the

cluster. By default, Spark’s Fair Scheduler prioritizes large jobs and starves smaller jobs by

blocking all the servers allocated to a job until it completes. We modify it such that tasks

release their resources when they are done.

Random: Tasks allocations are chosen randomly. While this scheme has almost no

overhead, it is both compute-oblivious and congestion-oblivious.

Nona: We run Nona’s optimization offline separately from its simulator. The performances

of our implementation of Nona’s optimization are discussed in section 2.5.9. The output of

the optimization is saved to a file. The simulator loads Nona’s probability distributions from

the file at startup, and uses them to make congestion-aware scheduling decisions.

Opportunistic: Whenever the contracted graph presents parallel branches, distribute all

these branches on different servers. The specific servers are chosen randomly such that one of

the branches is placed on the same servers as the root of the subgraph, making this scheme

also congestion-oblivious.

Nona∗: Nona’s optimization problem takes the average arrival rate of jobs as input.

In some cases where that information is not available initially, or if the arrival patterns

change during operations, Nona would run with a non-optimal assignment strategy. To test

Nona’s robustness to varying system conditions, we run simulations using a single set of

allocation probabilities, obtained from solving the optimization a single time, and use this

same probability distribution for all the loads (or arrival rates).

Expert : this scheme uses a manually derived probability distribution. For every data

point, we reason about the job’s DAG and the system’s expected load and determine the

optimal distribution. This process is tedious and does not scale in the size of the cluster, the
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Figure 2.3: Average JCT depending on system load.

number of DAGs, or the complexity of the DAGs.

Among these schemes, the Expert, Opportunistic, Random, as well as Nona and Nona∗

do not use the current state of the cluster queues when making scheduling decisions. Decima

and Spark’s Fair Scheduler use live state information about the state of the cluster and the

completion progress of jobs to make decisions.

2.5.2 Nona’s Overall Gains

Figure 2.3 compares different scheduling techniques’ average JCT on a cluster with 80 servers

and 10 Gbps link bandwidth. We vary the interarrival rates λj of jobs j and derive the

corresponding compute load as
∑

j λjSj where Sj is the sum of the service times of all tasks

of j.

As shown in Figure 2.3a, when considering all jobs in the cluster, Nona performs similarly

to the Expert case, and outperforms Spark by a factor of 32 to 56×, the Opportunistic

scheme by a factor 30 to 180×, the Random scheme by a factor 70 to 202× and Decima

by a factor of 139 to 350× on average JCT. As the system load increases, the likelihood of

having more active jobs than servers increases. Spark attempts to fairly allocate as many
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servers to every job in the system. This means giving each job a single server. Thus, the

average JCT for Spark plateaus as the scheduler stops performing any parallelism to maintain

fairness. Nona still achieves lower JCT both average and 99%-tile (by a factor 77×), since

even at high load, some amount of parallelism can be beneficial when low amounts of data are

transmitted on the parallel branches. The JCT for the Opportunistic and Random schemes

is dominated by network congestion even at low load, and therefore their performance is not

affected significantly by load variations when compared with Nona’s performance.

Similarly, Figure 2.3b shows that when the average is taken only over inference jobs,

Nona also yields average JCTs similar to the Expert case and also outperforms Spark, the

Opportunistic and Random schemes, and Decima by respective factors of 28 to 56×, 25 to

111×, 59 to 145, and 59 to 125×, respectively. Decima performs better when the average

JCT is taken over inference jobs only since it prioritizes completing existing jobs over running

the Shortest Remaining Tasks First (SRTF), and therefore starves the small background jobs.

The main reason for these improvements is network congestion: while Nona is offline

and does not have an instantaneous view of the network, neither of Spark, Decima, or the

Opportunistic or Random schemes take the network into account when making scheduling

decisions. Therefore, all these schemes overload the network link by eagerly distributing jobs

as much as possible, while Nona successfully prevents the system from jamming.

2.5.3 Impact of the Network Capacity

To isolate the impact of network resources on average JCT, we fix the arrival rate and vary

both the capacity of the network and the network demand of each job, while keeping the

compute load constant. In Figure 2.5, Nona still performs as well as the Expert solution, and

yields consistent average JCT gains over a wide range of bandwidths. More specifically, Nona

outperforms Spark’s Fair Scheduler, the Opportunistic and Random schemes, and Decima,

respectively by up to 22× (27×), 60× (44×), 70× (57×), 111× (44×) when the average is

taken over all jobs (over only inference jobs). Here again, Decima suffers particularly from
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Figure 2.4: CDF of the JCT for each job, on a 80-server cluster, with 70 % communication
and compute load.

starving background jobs.

2.5.4 Nona’s Robustness to Arrival Rate Uncertainty

To show the robustness of Nona’s optimization to uncertain arrival rates, we run the opti-

mization a single time, for expected loads and bandwidths of 50 % and 10 Gbps respectively.

Then, we run the same experiments as in sections 2.5.2 and 2.5.3 for Nona using only this

single solution. The resulting JCT, labeled Nona∗ in Figures 2.3 and 2.5, show Nona does

not require a precise knowledge of the effective arrival rates. Nona∗’s performance is within

15% of Expert and Nona, and therefore outperforms all the other schemes by factors similar

to Nona’s.
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Figure 2.5: Average JCT depending on link bandwidth.

2.5.5 Impact of the Job Structure

Figure 2.4 breaks down Figure 2.3 and shows the Cumulative Distribution Function (CDF) of

JCTs for each job class, at a load of 70 %. For inference jobs, Nona performs similarly to the

Expert allocation and outperforms every other scheduling approach when the DAG presents

parallelism options (Figures 2.4b,d,f), and outperforms all other schemes except for Spark

for jobs with a single task (Figures 2.4c,e). Nona gives slight priority to background jobs

given that its objective function is an average over the JCT of all jobs, including background.

Indeed, while we modified Spark to prevent head-of-line blocking for these small background

jobs, Figure 2.4a shows that Nona serves almost 40% of background jobs with no queueing

delay, compared to 1% for Spark. Overall, for inference jobs, Nona accelerates the 99%-tile

tail JCTs over Spark, the Opportunistic and the Random schemes, and Decima by 57×,

15×, 89× and 58× respectively. Figure 2.4a confirms Decima suffers from starving the short

and frequent background jobs, with 99%-tile tail JCT 343× higher than Nona. A similar

behavior is observed for single-task inference jobs as demonstrated in Figures 2.4c and e:

Nona achieves a 99%-tile tail JCT 343× lower than Decima.

49



0 20 40 60 80 100 120 140

0

0.5

1

1.5

Number of Nodes

Av
er

ag
e

JC
T

(m
s)

Spark Decima Nona Opportunistic Expert Random

(a) All jobs

0 20 40 60 80 100 120 140
0

500

1,000

1,500

2,000

Number of Nodes

(b) Inference jobs

Figure 2.6: Average completion time as a function of the size in number of servers of the
cluster. The compute demand is scaled to keep the compute load constant.

2.5.6 Impact of the Cluster Size

Figure 2.6 also demonstrates that Nona’s performance stays consistent as we scale the number

of servers, while other schemes make an increasing number of poor scheduling decisions. More

specifically, Spark’s Fair Scheduler and Decima achieve 40− 80× (75− 95×) and 130− 530×

(3− 50×) worse average JCT when summing over both inference and background jobs (only

over inference jobs). The system load is kept constant at 50%. As mentioned in section 2.3.4,

Nona’s optimization formulation is independent of the number of nodes in the cluster. The

arrival rates of jobs are scaled across experiments to keep the load constant.

2.5.7 Breakdown of the Job Completion Time

We present in Figure 2.7 a breakdown of the average JCT by compute and communication

processing time and compute and communication queueing delays. For each job, we add the

time spent in queues, on links, or being processed by a server by individual tasks. Due to

some computation and communication running in parallel, the total might be different from

figure 2.3. For clarity, we clip the graph at 2s, to show some of the communication costs.
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Figure 2.7: JCT split between computation and communication service and queueing times.

Within each job, the compute demand is similar across all the jobs, since the same

operations need to be run. AlexNet, VGG16, and the background jobs are reduced to a single

task after contraction, hence have no communication requirements, and no communication

queueing delays.

Queueing delay plays a significant role in the final JCT. GPT is the only job for which the

Expert decision and Nona choose to distribute some of the computation in this setting. The

total communication cost is however negligible on the graph compared to other contributions

and can therefore not be seen here. GPT, DenseNet121, and ResNet18, Decima, Spark, and

Opportunistic all suffer from distributing computation too much.

2.5.8 Statistically similar stochastic schedulers

To measure the importance of the choice of distribution, we craft two additional baselines,

Spark †and Decima †. In both cases, we first run an experiment with Decima or Spark, and
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Figure 2.8: Comparison of Spark and Decima with their statistically similar stochastic
schedulers.

collect placement statistics. More specifically, for each task in each job class, we measure the

probability of running it on a server given the specific server that hosted its predecessors. We

then run the same experiment a second time with a stochastic scheduler using the probability

distributions collected by the prior run. To have meaningful statistics, we shrink the cluster

size to 8 nodes and run 1000 total jobs in both cases.

We compare in Figure 2.8 the JCT for Decima, Spark, Spark †, and Decima †. In

Figure 2.8a, Decima actively starves background jobs and therefore achieves a worse JCT

than Spark †; Decima †performs slightly worse than Spark. In Figure 2.8b, both statistically

similar stochastic schedulers perform slightly worse. This shows that the choice of the specific

probability distribution has to come from a model of the system and that Spark and Decima

need online information to function properly.

2.5.9 Nona’s Optimization Implementation

Some linearization techniques have been proposed to solve problems with geometric fractional

objective functions [60, 61] like Nona’s. However, these methods consider problems with no
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equality constraints, as opposed to Nona (equation II). Therefore, we implement the objective

function of the Lagrangian relaxation of Nona’s problem, and attempt to minimize it. The

Lagrangian parameters are set empirically to multiple orders of magnitude above the expected

JCTs, to sufficiently penalize points outside of the feasibility region. After contracting jobs,

the size of the search space for the five jobs chosen is of 46, spread across 9 probability

distributions; in general, the problem scales linearly with
∑

j |Rj| and is independent of the

number of servers in the cluster.

Scheme Number of servers
16 32 48 64 80 96 112 128

Decima 108h 215h 321h 438h 555h 651h 765h 889h
Nona 13s 13s 13s 13s 13s 13s 13s 13s

Table 2.3: Training/optimization time comparison.

Table 2.3 reports the runtime of our single-threaded implementation of Nona’s optimiza-

tion’s solver, running on one AMD EPYC 7502P CPU, and compare it for various cluster

sizes to the time required to train Decima’s RL model on an Nvidia A100 using the same

input parameters. We scale the training set proportionally to the size of the cluster to ensure

a constant average number of jobs per server, explaining the linear scaling in training time.

Nona, on the other hand, uses a queueing theoretic model independent of the cluster size

to capture the essence of the problem’s properties, and solves its optimization formulation

30,000×–245,000× faster. On top of this, our simple approach for solving Nona’s optimization

problem is fully parallelizable, and could be made multithreaded. Smarter approaches to

solving the optimization problem could further reduce the time required by the optimization.

We leave these improvements to future work.

2.6 Related Work

This section categorizes prior approaches into five classes of techniques: (i) Inference Sched-

ulers, (ii) Heuristic-Based Schedulers, (iii) DNN Schedulers, (iv) Queueing-Theoric Tech-
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niques, and (v) Optimal Resource Allocation.

Inference Specific Schedulers

Datacenter schedulers for inference tasks have gathered interest from the community in the

past couple of years. However, as shown in the survey from Ye et al. [62], the focus of previous

approaches has been on clever Machine Learning or GPU architecture based approaches to

make the compute operations themselves more efficient. For example, in [63], the authors

explored the benefits of caching data in GPU memory; in [32], the authors expanded on

this idea by arguing for a system that only reloads the difference between two variants of

the same model. INFaas [42] proposed a system to automatically choose model variants

depending on the current cluster state. Finally, AlpaServe [26] demonstrated the benefits

of model parallelism for statistical multiplexing of compute tasks in jobs. Our approach is

based on the insight that the network must be taken into account for latency-sensitive online

queries. Some of the techniques exposed in these papers (like caching) are compatible with

Nona but would require some modifications of our optimization formulation; we leave this as

future work.

Heuristic-Based Schedulers

Heuristic-based schedulers attempt to distribute tasks on a cluster by observing its current

status and using a heuristic to make fast placement decisions. For instance, Gandiva [18],

Tiresias [19], Themis [19], Pollux [20], and Pipedream [59], proposed several algorithms to

distribute machine learning training jobs while optimizing compute utilization, compute

throughput, or fairness metrics. However, these approaches did not consider latency-sensitive

user-facing inference jobs. Sparrow [64] proposed an online randomized sampling mechanism

to determine the status of compute queues before allocating tasks to servers. Yet, Sparrow’s

approach is not extendable to network queues because of the bursty nature of network

flows [12]. In addition, the key difference between online schedulers and our approach is that
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online schedulers rely on the short-term behavior of queues while our queueing theory-based

approach draws on the long-term stochastic system characteristics.

DNN Schedulers

Recent DNN models have become sufficiently large to warrant dedicating entire clusters or

isolated subsets of clusters to single jobs [41]. DNN-specific approaches thus work offline

to derive an optimal allocation of resources specific to one cluster and one job. In [22], the

authors derived an optimal DNN job DAG split minimizing the training time. In [15], the

authors explored parallelization dimensions beyond model and data parallelism and found

strategies combining them. PipeDream [59] and Gpipe [65] improved pipelining for DAG

parallel training of a single job. Gpipe assumed that the entire cluster is available for a

single job; consequently, Gpipe is not tailored to consider interactions between different

jobs. Therefore, extending these solutions to handle streams of inference jobs is non-trivial:

it requires considering much larger search spaces that consider multiple DAGs and their

interactions.

Queueing-Theoretic Techniques

Unlike heuristic-based schedulers, queueing-theoretic scheduling techniques leverage the

steady-state properties of the cluster to distribute a series of tasks on a network of queues [24].

For instance, Jackson networks [30] consider networks of queues with Poisson arrival processes

and exponential service time distributions to summarize the flows of jobs by a Markov

model [25], and to derive a product-form expression of the JCTs. However, Jackson net-

works consider independent customers, whereas datacenter jobs DAGs introduce dependency

between tasks. On top of this, DNN inference workload runtimes do not match exponential dis-

tributions, and only approximations are available for Jackson networks with non-exponentially

distributed service times.
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Optimal Resource Allocation

Several papers have proposed scheduling methods for non-DNN jobs. For example, [66]

derived optimal query execution plans for geo-distributed data. Similarly, [67, 68] studied

latency-optimal scheduling schemes and proposed methods to optimize resource utilization.

Finally, [69] explored dependency-aware scheduling. Yet, these works do not consider DAG

parallelism for user-facing inference jobs with a complex DAG structure, often because they

are geared toward smaller jobs with DAGs reduced to one task. On top of this, these solutions

do not take into account network congestion.

Distributed coded computation.

Coded computing has been proposed as a way to reduce the communication requirements

of tasks by adding redundant compute operations. As such, it circumvents communication

bottlenecks by reconstructing results from a subset of successful tasks. For instance, [70–72]

study the performance of coded computation in distributed computing for various tasks.

Other approaches look at leveraging available data and compute redundancy [73–80] to

perform coded computation. While these distributed techniques optimize the communication

and computation tradeoffs, they are only applicable to linear functions or multivariate

polynomials because of the decomposable structures of such functions. Thus, they cannot be

easily extended to general nonlinear functions, which are required by ML models studied in

this chapter.

2.7 Summary

In this chapter, we present Nona, a stochastic, queueing-theory-based scheduler for DAG

parallelism in datacenter clusters. Nona uses an optimization formulation to derive placement

probability distributions minimizing average job completion time. Our approach takes into

account both network and compute service and queueing times, and can easily be extended to
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consider other constraints (e.g., memory). We show that Nona outperforms state-of-the-art

heuristic-based solutions by up to 350×.
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Chapter 3

LINC: An In-Network Coding Approach

to Tame Packet Loss in Hybrid

Wireless-Fiber Backbones

3.1 Introduction

End-to-End (E2E) latency and goodput play a critical role in the QoS metrics of ultra-low

latency applications. Major internet service providers reported a direct correlation between

latency increases and business revenue [81, 82]; for example, AWS reported in [83] a 1 %

loss in sales per 100 ms of added latency. Conventional backbone networks rely heavily on

fiber-optic deployments to carry both throughput and latency-sensitive applications.

However, fiber deployments depend on geographical constraints: laying fiber in some areas

can be impossible or prohibitively expensive resulting in long detours and added latency. As

a result, emerging ultra-latency-sensitive application providers deploy hybrid wireless-fiber

backbones to carry traffic through a mix of fiber, satellite, and microwave links. For instance,

in cISP [84], the authors demonstrated the competitive performance of a microwave link

between Washington, DC, and New York City. Industry actors like Starlink [85], Taara [86],
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Figure 3.1: An illustration of a hybrid wireless-fiber backbone. The topology is inspired by
Topology Zoo [95].

Kuiper [87], or TeleSat [88] have developed new commercial Internet Service Providers (ISP)

serving customers through wireless links. On top of a more direct path, these alternatives

also benefit from shorter propagation delays compared to fibers.

While these hybrid deployments outperform fiber-only backbones in optimal scenarios,

they are subject to high environmental-induced packet loss: weather events [84, 89], physical

objects blocking the line of sight path [90], and human-induced interferences [91] impact

signal-to-noise ratio and result in transient packet loss surges [92–94].

Conventionally, end-hosts implement transport protocols to recover from network packet

drops. The choice of the transport protocol is, therefore, agnostic to the types of links used

in the backbone networks. Most transport protocols in today’s backbones [96] treat loss as a

signal for congestion. Therefore, environmental-induced packet loss translates into reduced

sender rates and link under-utilization.

To address the above challenge, prior work proposed using Network Coding (NC) [97–

100]. NC offers strong resiliency to random packet loss and provides low-latency guarantees.

However, prior NC approaches assume access to the end-host network stack [101–104].

In this chapter, we argue that this assumption does not always hold, particularly in
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hybrid wireless-fiber networks. We posit that sans access to end-hosts, encoding and decoding

operations must be performed somewhere else on the path. Consequently, we propose a novel

approach to tame the impact of environmental-induced packet loss on reliable congestion

control protocols without requiring changes to the end-hosts.

Our system, called LINC, performs in-network NC while only assuming control over

arbitrarily small subsets of the network switches. LINC relies on capabilities of programmable

network switches, such as Intel Tofino [105], to implement a simple yet effective erasure

coding mechanism inside network switches.

To perform NC, LINC uses a systematic block coding approach that we detail in sec-

tion 3.3.1. Our theoretical analysis quantifies LINC’s goodput gains by deriving the probability

of retransmitting a packet with and without LINC. We quantify how the choice of coding

parameters impacts the rate of retransmissions and the network goodput (§3.3).

We evaluate LINC in simulations on real-world backbone topologies and demonstrate that

LINC eliminates packet retransmission due to environmental packet loss, therefore cutting

E2E latency by up to 18 %.

3.2 Background and Related Work

Satellite and millimeter wave links. Several ongoing industrial efforts are underway to

provide connectivity in areas where fiber deployments are challenging. For example, Facebook

connectivity proposed Magma [106] as an effort to improve connectivity of remote rural

communities, and TerraGraph [107] for last-mile connectivity in dense urban areas through

millimeter wave links. Similarly, Taara [86] proposes beam-of-light communications for high-

speed, high-capacity connections in areas where fiber deployments are not economically viable.

Satellite-based commercial ISPs have existed for some time (see for example HughesNet [108]

and ViaSat [109]) but suffered from high latency due to the altitude of their orbit. Recent

low-earth orbit constellations like Starlink [85], Kuiper [87], or Telesat [88] report E2E
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latencies in the order of tens of ms.

Environmental-induced packet loss. Environmental-induced packet loss in backbone

networks is fundamentally linked to the physical vulnerabilities of optical and hybrid systems.

Ghobadi et al. identified that backbone networks are highly susceptible to environmental

disruptions, such as temperature fluctuations, which degrade signal quality over time, and

physical incidents like fiber cuts or conduit damage during storms, leading to outages that

cascade across channels sharing the affected segment [94]. Singh et al. observe that variations

in signal-to-noise ratio, even under controlled conditions, can be amplified by external factors

like weather events and infrastructure aging, causing significant signal degradation [92,

93]. Recently, Myers et al. showed that transient phenomena like rain, fog, atmospheric

interference, and unplanned maintenance further exacerbate the instability of microwave-

based links [89]. These environmental impacts often trigger packet loss spikes by crossing

critical signal-to-noise thresholds, making recovery challenging and highlighting the inherent

fragility of hybrid wireless-fiber networks to environmental-induced packet loss events.

Congestion control. Traditional E2E congestion control algorithms, like TCP, rely on

packet drops occurring at full network buffers as a signal for congestion. This approach is

based on the assumption that only congestion is responsible for dropped packets, which is

reasonable for wired links with low erasure probability. For paths containing a wireless link,

however, since TCP is unable to discriminate between packet loss due to channel erasures

or due to congestion, the channel capacity will often be significantly underestimated. This

shortfall of TCP in high-loss systems has been well-studied by the community [110–114].

Network coding. Among possible approaches, NC has shown to be an efficient solution

to the above problem. First introduced as a capacity-achieving technique [115], NC has been

extended and improved in various ways [98, 99, 104], providing high-bandwidth and low

latency guarantees. In [101], authors have shown how to augment the TCP/IP stack with NC

by adding a coding layer. This proposal also implemented re-encoding at intermediate nodes,

providing flexibility to variations in the erasure probability on different links. In [97], authors
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demonstrated the feasibility of NC approaches in software-defined networks and showed again

the benefits of re-encoding at intermediate nodes.

Overall, these proposals have demonstrated the potential of NC. However, they all rely

on access to and control of end-hosts. While encoding and decoding packets in-network has a

latency cost compared to other E2E NC approaches, we argue in this chapter that NC should

also be used in cases where the network provider does not have access to end-hosts and can

only modify subsets of the backbone network.

3.3 System Design and Coding Approach

In this section, we first present LINC’s design and assumptions (§3.3.1), before deriving the

probability of retransmitting a packet in LINC and its impact on aggregate packet arrival

rate (§3.3.2).

3.3.1 LINC System Design

Figure 3.2 illustrates LINC’s system model. We consider a set of hosts sending data through

a network to a set of receivers. Among them, senders h1, h2, . . . , hm share a lossy link, l, on

their path to their corresponding receivers g1, g2, ..., gm. For any sender hi, we define ηi to

be the number of non-lossy links on the (hi, gi) path. We model link l as a packet erasure

channel [116], with an associated environmental loss probability ϵ. We assume that losses are

not correlated.

Each source hi generates packets according to a Poisson process with an average of λi

packets per second. Let s1 and s2 be switches connected by link l, and consider the case

where traffic flows from s1 to s2. In practice, acknowledgment packets traverse the other way;

our analysis extends naturally to reverse traffic as well.

We take the viewpoint of a network operator, who only has control over some parts of the

network, including s1 and s2, but not over users’ devices or applications running on these
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Figure 3.2: Illustration of LINC’s system model.

devices. As these applications set transport protocols, we assume that traffic uses some

version of TCP [96] that we do not have control on. Note that despite this assumption, our

method is transparent to end-hosts, and therefore compatible with any other E2E coding

protocols.

In-network encoding. LINC uses a systematic block code to encode packets at s1.

More specifically, for every block B = (P1, P2, ..., Pk) of k consecutive incoming packets to s1

with s2 as the next hop, s1 first transmits all packets of B unmodified. Then, s1 generates

n − k additional packets destined to s2, thereby sending a total of n packets to s2. The

process of creating the coded packets in s1 consists of calculating a linear combination of

packets in block B, where the coefficients are chosen such that if any k out of the n packets

are successfully transmitted, the resulting matrix will be invertible (i.e. a maximum distance

separable code [117]). LINC’s packet header includes log2(n) bits to identify the index of the

packet in the block. This allows switch s2 to determine whether a packet has been coded,

and if so which linear combination should be used to decode it.

In-network decoding. Because of the environmental losses on link l, switch s2 receives

a subset of the n packets sent by s1. Switch s2 forwards successfully received uncoded packets
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to their next hops without waiting for all the packets in the block to be transmitted. For

every block, s2 counts the number of successfully received packets. If at least k packets

are received, s2 decodes the block and starts sending the lost packets that it recovered. If

less than k packets are received, s2 moves on to the next block, so that the transport layer

reliability mechanism can detect losses and trigger retransmissions.

3.3.2 LINC Theoretical Analysis

Consider the backbone network shown in Figure 3.2, where link l drops packets with probability

ϵ. As discussed in the previous section, LINC recovers lost packets using its in-network

encoding/decoding techniques. As a result, a LINC backbone network has a higher goodput

compared to a backbone without LINC. In this section, we derive mathematical formulations

to quantify LINC’s goodput gains.

Retransmission Rate

In the block coding approach described in section 3.3.1, a block is successfully decoded

if at least k out of n packets in the block are successfully transmitted. Given that our

block code is systematic, when a block is not recoverable all lost uncoded packets must be

retransmitted. Note that uncoded packets correspond to the original data packets and need

to be retransmitted, whereas we do not need to retransmit coded packets that are lost. Let

Q be the random variable corresponding to the number of losses in a block, and C be the

random variable corresponding to the number of lost uncoded packets.

To quantify LINC’s goodput gains, we start by deriving the expected packet retransmission

rate RLINC , by formulating the expected value of the number of uncoded packets that have

been lost (i.e., E[Q,C]), as follows:
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(3.1)

In the above equation, RLINC is computed by taking the expected value of the joint distribution

(Q,C). Using the law of total probability, we express this joint distribution as a function of Q

and the conditional distribution of C, conditioned on Q. Since packet losses are independent,

Q follows a binomial distribution. To determine the distribution of C, we draw the following

analogy: in a block of n packets, there are k uncoded packets and n − k coded ones. We

randomly select q packets and try to determine the number of uncoded packets among these

q. As a result, (C | Q) corresponds to a hypergeometric distribution.

Aggregate Packet Arrival Rate

Next, we formulate the aggregate packet arrival rate over all links in the network. To do

so, we first formulate the aggregate arrival rate of packets on link l (λLINC) by considering

the following three categories of traffic on link l: (i) the aggregate raw traffic from all the

senders (
∑m

i=1 λi), (ii) added coded packets (n
k
), and (iii) the number of retransmissions for

lost packets that were not recovered. The probability of a packet being retransmitted s times

is given by Rs
LINC , thus the fraction of retransmitted packets is given by the sum of Rs

LINC
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over the number of retransmissions. Putting it together, we have:

λLINC =

(
m∑
i=1

λi

)
·
(n
k

)
·
(

+∞∑
s=0

Rs
LINC

)
=

n
∑m

i=1 λi

k(1−RLINC)
(3.2)

Second, we formulate the aggregate arrival rate of packets on all the other non-lossy links

in the network (λ′
LINC). As we are summing over all non-lossy links, the traffic from each

sender contributes to the arrival rate of ηi links, hence:

λ′
LINC =

(
m∑
i=1

ηiλi

)
·
(

+∞∑
s=0

Rs
LINC

)
=

∑m
i=1 ηiλi

1−RLINC

(3.3)

The total aggregate packet arrival rate on a LINC network is λLINC + λ′
LINC .

Goodput Gains

Finally, to derive LINC’s goodput gains, we first repeat the above calculations for the case

without LINC. Then, we derive the ratio of goodputs for systems with and without LINC.

In a network without LINC, the retransmission rate is given by RnoNC = ϵ, yielding a

total arrival rate of packets on the lossy link, as:

λnoNC =

(
m∑
i=1

λi

) ∞∑
s=0

ϵs =

∑m
i=1 λi

1− ϵ
(3.4)

Similarly, on the other links:

λ′
noNC =

(
m∑
i=1

ηiλi

) ∞∑
s=0

ϵs =

∑m
i=1 ηiλi

1− ϵ
(3.5)

Goodput is defined as the ratio of useful packets (the raw traffic from all senders traveling

over hi + 1 links for sender i) over the total number of packets transmitted. The goodput for
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a system using LINC, GLINC , (respectively GnoNC for a system not using LINC) is given by:

GLINC =

∑m
i=1 λi(hi + 1)

λLINC + λ′
LINC

GnoNC =

∑m
i=1 λi(hi + 1)

λnoNC + λ′
noNC

Finally, we define ∆, the ratio of goodputs for a system with LINC over a system without

LINC:

∆ =
λnoNC + λ′

noNC

λLINC + λ′
LINC

=

∑m
i=1 λi

1−ϵ
+

∑m
i=1 ηiλi

1−ϵ

n
∑m

i=1 λi

k(1−RLINC)
+

∑m
i=1 ηiλi

1−RLINC

=
1−RLINC

1− ϵ

∑m
i=0 λi (ηi + 1)∑m
i=0 λi

(
ηi +

n
k

) (3.6)

To determine the optimal choice of coding parameters (k, n) for LINC, we propose an

optimization formulation that maximizes ∆ subject to the following constraints: (i) n ≥ k

and (ii) k > 0. The optimization takes the network topology, end-hosts sending rates λi and

ϵ ∈ [0, 1] as input parameters.

3.4 Evaluations

To evaluate LINC, we implement a custom event-based simulator. This section describes our

simulation methodology and compares its performance with the state-of-the-art.

3.4.1 Methodology

Simulator. Our simulation generates packets on senders following Poisson processes. The

sending rates are randomly selected across senders and are normalized to an average network

load of 50%. To simulate environmental packet loss, we select a single link to randomly drop

packets. Each link is modeled by a shared resource processing packets. When a packet is

lost, we trigger a retransmission after three duplicate ACKs are received by the sender. We
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Figure 3.3: Topologies used in our simulations.

measure several parameters including the number of lost packets that were recovered using

LINC, the number of retransmitted packets, and the arrival rate of packets at each link.

We define the E2E packet delay as the difference between the time a packet was received

successfully on a receiver, and the time the same packet was created at the corresponding

sender.

Topologies. We consider two topologies, shown in Figure 3.3. In the first scenario

(Figure 3.3a), two senders are sending traffic over a 5-hop network, each to a different receiver.

The middle link is lossy, with latency 1 ms and drop probability 5%, unless otherwise stated.

The latency for each non-lossy link is set to 100 ms. The number of non-lossy links for either

sender is 4, as shown in Figure 3.3b. The second scenario (Figure 3.3b) is the VtlWavenet2011

topology taken from the Topology Zoo dataset [95]. We set a central link near Paris to be the
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lossy link and choose the following (sender, receiver) pairs: (Marseille, London), (Bordeaux,

Amsterdam), (Geneva, London), (Sete, Antoing), and (Blanzay, Strasbourg). This results

in around 20 non-lossy links for each (sender, receiver) pair. The latency for each link is

computed from the geographical distance between nodes. In both cases, all non-lossy links

are assumed to have a rate of 100 Gbit/s. The lossy link is shown in red in both figures, and

we highlight senders in purple and receivers in green in Figure 3.3b. For both scenarios, we

set k = 50 unless otherwise noted.

3.4.2 Aggregate Packet Arrival Rate

In TCP, retransmissions happen E2E. Therefore, when a packet needs to be retransmitted,

it utilizes bandwidth on every link on its path. Figures 3.4 and 3.5 compare the aggregate

packet arrival rate of LINC under different scenarios. In Figures 3.4a and 3.4b (respectively

Figures 3.4c and 3.4d), we show that empirical results from our simulations closely align with

our theoretical formulation (§3.3.2). The dotted lines represent the case without LINC.

As expected, the minimum value for the aggregate packet rate is a function of the

packet loss rate ϵ. As ϵ increases, the amount of redundant packets needed to correct lossy

transmissions increases. For instance, for ϵ = 0.1, Figure 3.4b shows three regimes: (i)

1 ≤ n
k
< 1.04 where the coding rate is too low to recover a meaningful number of packets,

but extra coded packets contribute to the aggregate rate, (ii) 1.04 ≤ n
k
< 1.18 where the

retransmission rate decreases rapidly to 0, compensating for the added coded packets, and

(iii) 1.18 ≤ n
k
< 1.4 where no retransmissions remain, and increasing the coding rate only

loads up the lossy link. A similar behavior can be observed in both scenarios and across our

experiments.

The same behavior can be observed in both scenarios.

Figure 3.5 shows similar results. Given the small number of hops in scenario 1, the relative

impact of adding packets on the lossy link is more important than for scenario 2. This can be

seen in the first and last regimes where the aggregate packet rate increases with the coding
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Figure 3.4: Aggregate packet rate for different erasure probabilities ϵ of the lossy link.

rate. Increasing k has two effects: first, since n and k are integers, the granularity of choice

for coding rates is finer when k is large. If k is too small, then the optimal coding rate might

not be achievable. Second, our results show that even at a coding rate that can be achieved

for all values of k presented here, larger values of k further reduce the aggregate packet

rates. As mentioned, our simulations show the same trend as predicted by our analytical

model: in practical deployments, for a given ϵ, the optimal coding rate can be computed

using equation 3.6.
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Figure 3.5: Aggregate packet rate for different values of k.

3.4.3 Retransmission Rate

To evaluate the impact of a reduction in retransmission probability in LINC, Figures 3.6

and 3.7 plot the effects of ϵ and k on retransmission probabilities. In Figures 3.6a and 3.6c, we

use equation 3.1 to compute the expected rate of retransmissions and verify in Figures 3.6b

and 3.6d that our simulations match the derivation. Importantly, LINC eliminates all

unnecessary retransmissions by driving the retransmission rate to zero over the entire path,

at the cost of a small added overhead on the single lossy link, for all values of ϵ. In real-world

implementations, service providers should use our theoretical model to determine the optimal
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Figure 3.6: Rate of retransmissions for different erasure probabilities ϵ of the lossy link

coding rate in their setup.

Figure 3.7 studies the impact of the value of k on the rate of retransmissions. We observe

the same trend as in Figure 3.5: the higher k, the closer the retransmission rate is to a step

function. Again, we observe the same trends in simulation as predicted by our analysis.

3.4.4 E2E Delay

Figure 3.8 shows the mean E2E delay experienced by all packets in our simulations. LINC

reduces the delay by up to 18 %, by reducing the amount of retransmissions required. For

both scenarios, the average delay is primarily related to the probability of a packet being
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Figure 3.7: Rate of retransmissions for different values of k.

retransmitted, since a retransmission yields a delay of at least 1.5 RTT, compared to 0.5 RTT

when a packet is successfully transmitted or recovered on the lossy link. As we increase the

coding rate and subsequently decrease the rate of retransmissions, the E2E delay approaches

0.5 RTT.

3.5 Summary and Future Work

In this chapter, we present LINC, an in-network system to tame the impact of environmental

packet loss events in hybrid wireless-fiber backbone networks. We provide a detailed analysis
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Figure 3.8: E2E packet delivery delay.

of LINC’s goodput gains, providing insights on choosing optimal parameters in practical

settings. Our simulations show both the validity of our analysis and that LINC significantly

reduces the rate of E2E retransmissions, yielding higher goodput in the network and lower

delay for flows subject to packet loss events. Future work will include more sophisticated

coding strategies, as well as a programmable switch implementation.
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Chapter 4

Sirona: Memory Efficient Reactive

Subflow Spraying for Datacenter Load

Balancing

Modern datacenter networks employ topologies with rich path diversity between host pairs

to improve fault tolerance and enable cost-efficient scaling. However, effectively utilizing this

path diversity through load balancing remains a critical challenge. The standard approach,

Equal Cost Multi-Path (ECMP), uses flow-level hashing that can lead to persistent congestion

due to hash collisions. In particular, ECMP suffers in scenarios with changing path states or

varying network conditions, and in heterogeneous clusters presenting asymmetric paths.

In [2], the author introduces Reactive Subflow Spraying (RSS), which combines the

benefits of multipath support and reactive routing to achieve near-optimal load balancing.

RSS splits flows into subflows that are independently routed. Regularly, RSS uses one-

way delay measurements to reroute the worst-performing subflow to a random path. This

approach demonstrated flow completion times (FCT) within 5 − 10 % of optimal across

various scenarios.

However, RSS faces significant deployment challenges due to its memory requirements.
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The need to maintain state for each subflow can strain memory resources, particularly in high-

throughput environments with many concurrent flows. This limitation becomes especially

acute when implementing RSS in hardware like SmartNICs, where memory is a precious

resource. In this chapter, we introduce Sirona, a memory-efficient version of RSS achieving

similar performance with 3× lower memory footprint, making it practical for hardware

implementation in modern datacenter environments.

The work in this chapter was done in collaboration with Abdul Kabbani and Ahmad

Ghalayini.

4.1 Introduction

Streaming services, social media infrastructure, and the rise of Artificial Intelligence (AI)

applications have driven the development of more and more sophisticated datacenters. The

networks powering these datacenters are built to provide fault tolerance and cost-efficiency,

by offering many different paths to servers wishing to communicate data. Most modern

networks use some version of a Fat Tree Topology [50], with flows choosing their path using

ECMP [118]. In ECMP, switches in the network hash flow-level information (e.g. source and

destination IP address, source and destination port, transport protocol) to pick the output

port for every packet in the flow. This hash is consistent across the lifetime of the flow, which

presents significant benefits for in-order delivery, but also results in persistent congestion

when hash collision occurs. Numerous studies have shown that ECMP’s oblivious nature

results in suboptimal load balancing and can create congestion hotspots [119–133].

The research community has proposed several alternatives to address ECMP’s limitations.

For example, Random Packet Spraying (RPS) [123] takes a lower granularity approach by

distributing individual packets across all available paths, which can significantly improve

load balancing in symmetric network conditions. However, RPS’s effectiveness deteriorates

markedly in asymmetric scenarios, for example in heterogeneous deployments or when link
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failures create capacity disparities between different paths. On the other hand, Flowben-

der [126] reactively reroutes flows experiencing high ECN marking rates and properly handles

asymmetries in the network topology. However, since it uses flow-level routing, Flowbender

still struggles to achieve perfect load balancing.

At a high level, Reactive Subflow Spraying (RSS) [2] combines the reactivity of Flowbender

and some of the finer load balancing capabilities of RPS. Instead of randomly spraying each

packet on different paths, RSS takes inspiration from Multi-Path TCP (MPTCP) [122] and

introduces subflows as a level of granularity between packet-level (as in RPS) and flow-level

(as in ECMP).

RSS faces a significant hurdle in practical deployment: its memory requirements. The

need to maintain an independent state for each subflow imposes substantial memory overhead,

particularly in environments with high numbers of concurrent flows. This limitation becomes

particularly problematic when considering implementation in hardware accelerators such as

SmartNICs [134], where memory resources are both limited and expensive. As datacenter

networks continue to scale and handle increasing numbers of concurrent flows, this memory

overhead threatens to make RSS impractical for widespread deployment.

In this chapter, we build on [2] and present the following extensions of RSS:

• We explore the importance of the choice of congestion signal for the performance of

RSS.

• We provide insight into the choice of parameters for RSS.

• We present our study of various flavors of RSS.

• We introduce Sirona, a memory-efficient version of RSS achieving similar performance

with 3× lower memory footprint, making it practical for hardware implementation in

modern datacenter environments.

Through extensive simulations, we show reductions in maximum FCT of up to 89 % over

traditional load balancing schemes, we demonstrate that Sirona performs just as well as RSS
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(within less than 4%), and provide a sensitivity analysis of various parameters of RSS not yet

explored.

4.2 Background

We reproduce here for clarity arguments motivating RSS exposed in [2], and discuss the

limitations of the initial design.

4.2.1 Background

As mentioned in section 4.1, modern datacenter networks offer many redundant possible paths

for network traffic. Load balancing can be seen as a balanced allocation problem: n flows

need to be spread over p paths as close to uniformly as possible. On a conceptual level, this

problem of placing balls into bins has been extensively studied (see for example [135–138]): as

the number of balls–or flows in our case–grows, the distribution of the number of balls per bin

tends towards a uniform distribution. As shown in [136], the maximum load for n > p log p

is n
p

[
1 + Θ

(√
p log p

n

)]
, hence for n → ∞, the load of the busiest bin and therefore of all

the bins tends to n
p
. Outside of this asymptotic regime, severe imbalances can appear. For

example, when the number of flows equals the number p of available paths, the probability of

at least two flows colliding (and therefore at least one path being idle) is n−1
n

.

We show in Figure 4.1a a sample Top of Rack (ToR) switch with 5 ports and 3 servers

to illustrate the main differences between the classes of load-balancers described in this

section. Note that the diagram presents some asymmetry, with the right uplink having a

lower capacity than the left one.

ECMP

ECMP is widely used across modern production datacenters. In ECMP, when a switch receives

a packet, it inspects its header, and hashes flow level information (collectively denoted by the
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Figure 4.1: (a) Sample ToR switch with 5 ports. (b-f) Example routing decisions for different
load balancing approaches.

packet’s entropy) to randomly decide among valid candidates which output port to send the

packet on. This decision is uniformly random across different flows, but consistent within a

flow. This has the benefit of ensuring in-order packet delivery which traditional transport

protocols like TCP rely on.

This granularity is the first limitation of ECMP: suppose a sender is sending five different

flows to a single receiver, in a cluster offering four different paths. In the best-case scenario,

one path will host two flows, and the remaining three paths will each host a single flow.

Hence, the two flows sharing a path will have significantly lower quality of service–and higher

Flow Completion Time (FCT)– than the other three flows.

The second limitation of ECMP comes from its randomness. Switches make a one-shot

routing decision that persists throughout the lifetime of the flow. In the worst-case scenario of

our example, all 3 flows could be hashed to the same path, resulting in 3× higher FCT, and

three completely idle paths. Even in cases where demand and offer match, as in a case with

four flows and four distinct paths, the randomness of ECMP could lead to an unbalanced

allocation. Since ECMP cannot react to network conditions, no rebalancing would occur in

either of these examples. The probability of this worst-case scenario, and generally of very

poor load balancing scenarios happening is inversely proportional to the number of flows
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sharing the system.

Figure 4.1b shows one such poor load balancing scenario, with all three servers s0, s1, and

s2 sharing the low bandwidth–link. While all three servers are reducing their sending rates

to accommodate sharing their allocated paths, the first uplink sits idle.

Random Packet Spraying (RPS) [123]

On the other side of the granularity spectrum, RPS has senders change part of the flow’s

signature in the entropy for every packet. The same hashing process happens at the switches,

but this time producing a new hash for each packet. Therefore, a new random path is chosen

for every packet, effectively randomly spraying packets across all available paths. As we have

discussed, increasing the number of balls (from flows to individual packets) enables close

to uniform load balancing: on average, every path will receive the same number of packets.

While series of packets could hash to the same path, these events have a probability vanishing

with their duration and importance.

The main drawback of RPS is highlighted by asymmetric conditions: suppose that due

to hardware differences, some links {li} have slower bandwidth than others. The sender is

unaware of this imbalance and therefore continues to randomly assign an entropy for each

packet. Since the flow of packets going through any of the {li} will have a slower rate, the

congestion control algorithm will adjust the rate for all paths, leading to underutilization of

all the other links.

Figure 4.1c shows this effect: all packets from all flows are sprayed equally across both

paths. Since the right link has lower capacity, a queue builds up, eventually leading to packet

drops, ECN markings, or some other congestion signal. The sending rate is therefore adjusted

to the capacity of the worst path, leading to an underutilization of the first uplink.
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MPTCP [122]

Finding a balance between per-flow and per-packet granularity has been explored in some

way in MPTCP. In that proposal, TCP flows are split into subflows each using a different

network path, yielding better resource utilization, increased redundancy, and failure resiliency.

Each subflow maintains its own congestion state, including its own congestion window (and

therefore its sending rate).

However, MPTCP does not allow for dynamic rerouting of subflows: the choice of paths

is done at the start of the connection and remains for its duration. Subflows can react to

varying network conditions by changing their rates but are constrained to a fixed routing

path. On top of this, the inherent complexity of keeping per-subflow congestion state poses

challenges for hardware-deployments [126].

Flowbender [126]

We discussed in the previous three sections the differences between ECMP, MPTCP, and

RPS in terms of load balancing granularity and the quality of the one-shot balancing decision.

Flowbender looks at the orthogonal problem of adjusting path assignments dynamically

as network conditions change. More specifically, Flowbender adopts the same granularity

as ECMP but uses Explicit Congestion Notifications (ECN) [139] markings as signals for

collision-based congestion. ECN-enabled switches set the ECN flag in packets’ headers when

congestion is likely to happen (in practice when the queue increases past some threshold).

When a Flowbender sender detects a fraction of ECN marked acknowledgments higher than

some predefined threshold for some time, it changes the entropy of the flow, resulting in a new

path being chosen for the flow with probability p−1
p

. Flowbender does not need information

about the topology of the network: changing the entropy of a flow has a high probability of

changing the path that the flow will take.

The main idea behind Flowbender can be seen as a series of dice rolls, where only the

lowest-scoring dice are rerolled at each round. Naturally, in this metaphor, the total score
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for all the dice increases with time. Similarly, for long-running flows, Flowbender converges

towards a better allocation of flows, with congested paths from hash collisions rerouted until

a good path has been found.

4.2.2 Reactive Subflow Spraying (RSS) [2]

Load balancing schemes can be partially characterized by the routable unit on which they

make decisions: flows for ECMP, and packets for RPS. RSS sits in the middle of this spectrum

and includes reactivity to network conditions with the same approach as Flowbender. Packets

are grouped in subflows in a round-robin fashion at the sender, with the number of subflows

being a tunable parameter σ set by the sender. This yields a resulting rate for every subflow

equal to 1/σ of the rate of the flow. Instead of handling load balancing by adjusting the rates

of subflow, we adjust the number of subflows per path to approach proper load balancing.

The number of subflows acts as a dial on the granularity scale: ECMP corresponds to

having a single subflow, and RPS corresponds to having an infinite number of subflows. In

practice, for hardware deployability reasons, we choose to limit σ to 16, but study its impact

in section 4.4.4.

As it receives acknowledgments, an RSS sender records the RTT values experienced by

each subflow (i.e. RSS uses RTT as a congestion signal). Periodically, RSS compares the

average RTT for each subflow over that time period and reroutes the subflow by changing its

entropy.

RSS only assumes that switches in the network support ECMP: all the functionality

is implemented on the sender, and packets from a flow look to switches like they belong

to different flows. Conversely, RSS needs no information about the network topology, but

instead naturally probes paths by adjusting the entropy of individual packets. Compared to

Flowbender, RSS explores network paths σ× faster.

Like other non-flow-based load balancers, RSS assumes that the transport protocol handles

out-of-order packet delivery. Indeed, a packet that is stuck for some time in a switch buffer
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can be overtaken by its successor follows a different path. Such network stacks have been

designed recently (e.g. SRD [140]). RSS’s design has the benefit of being much simpler to

implement than other multipathing approaches like MPTCP: all subflows remain part of the

same connection with the same parameters. The round-robin assignment of packets to flow

has other benefits, in particular in terms of loss recovery, that are out of the scope of this

work.

4.3 Sirona: Extending RSS

4.3.1 Why RSS works

1
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Figure 4.2: Oversubscribed topology with 8 servers, 2 layers, and 4 servers per Top of
Rack (ToR) switch.

As we detailed in section 4.2, load balancing problems can be modeled as a balanced

allocations problem. Consider the 6-node cluster shown in Figure 4.2, and a traffic matrix

where the three servers on the left (1 − 3) send traffic to the three servers on the right

(4− 6). Each sender generates σ subflows, hence a total of 3σ subflows handled by switch 1.

Since both paths (going through switch 3 or switch 4) have the same capacity, the optimal
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allocation consists of allocating 1.5σ subflows to each path. In cases where σ is odd and 1.5σ

is not an integer, there are two optimal allocations that RSS will oscillate between.

Therefore, we can model the system with two bins and 3σ balls. Initially, all balls are

placed randomly. Then, periodically, 3 balls (one per sender) are removed from the fullest

bin and replaced in random bins. In this simple example with only two bins, the situation

is guaranteed to not degrade until oscillation around the optimal allocations is reached. At

every step until then, either balls are placed in the same bin they were removed from, and

the situation stays the same, or some of the replaced balls are put in a different bin, and the

situation improves. The probability of the first case being low (in this particular case, 1/8),

the system will stabilize around the optimal allocation. When an optimal solution is reached,

RSS keeps rerouting flows, therefore a worse allocation could be visited temporarily.

RSS has two components: dividing flows into subflows and reactively rerouting subflows.

RSS practically increases the number of balls to be placed in bins, hence it is naturally likely

to have a better allocation than ECMP. Its reactivity acts as a second layer that improves

allocations over time.

Large settings make the analysis less direct: for example, topologies with three tiers

should be modeled as interdependent allocation problems since the links between tier 1− 2

and tiers 2− 3 do not see the same subflows. Furthermore, since each sender reroutes one

flow per update interval, when many senders are present, only one ball from the fullest bin

is guaranteed to be moved. In any case, at each iteration, balls are taken from some of

the busier bins and are replaced randomly across all bins, therefore likely to improve the

allocation.

4.3.2 RSS Memory Requirements

RSS, as described in [2] needs the following to function, for each flow:

• A vector E of size σ to record the entropy of each subflow. To make sure each subflow

keeps the same path until it gets rerouted, the sender must keep a record of the entropy
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value for each subflow.

• A vector Σ of size σ to record the running sum of RTTs for each subflow.

• A vector N of size σ to record the number of packets that were acknowledged for each

subflow. To normalize the sum of the received RTT values properly, the sender must

keep track of how many packets were ACKed for each subflow.

Other individual registers are needed, for example, to keep track of time and periodically

reroute subflows, but the main memory footprint comes from the above. This memory

footprint comes on top of the state information needed by the congestion control algorithm.

As described in section 4.3.1, higher subflow counts should help with reaching an optimal

load balancing state. However, Network Interface Cards’ (NIC) hardware only has so much

memory. We therefore explore modifications to RSS details to attempt to reduce the memory

footprint of RSS.

4.3.3 RSS Flavors

The description of RSS in [2] considers two parameters: the number of subflows, and the

duration of the period between two rerouting events. In practice, many other choices could

impact the final performance and the memory footprint of the system, such as the choice of

the congestion signal, or the number of rerouted flows per period. We present in this section

different flavors of RSS that we experimented with, along with a memory analysis.

Congestion Signals

[2] computes the mean Round Trip Time (RTT) to determine the worst performing subflow.

The main signal that RSS needs to function is that of congestion: it needs to figure out

which subflow sits on the busiest path. Therefore, only recording the maximum value of

the RTT over some time period rather than computing the mean should give access to

similar information. Focusing on the maximum value removes the need for vector N , since no
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normalization operation is necessary, and requires a vector M instead of Σ of size σ to record

the maximum RTT reported by each subflow. Since many commercial switches now support

ECN, and since many state-of-the-art datacenter congestion control protocols rely on ECN

(e.g DCTCP [121]), we also consider ECN percentage as an alternative to mean RTT. Using

ECN does not change the memory footprint of RSS, since computing a percentage requires

knowing the total number of packets.

Should subflows with no feedback be rerouted?

For every congestion signal, we must figure out whether to reroute in priority subflows for

which no feedback was received can be asked. In practice there can be two reasons for

this: either (i) a path is severely congested, to the point where packets are dropped, or

acknowledgements are delayed beyond an update interval, or (ii) the congestion window of the

flow is smaller than the number of subflows, and some subflows did not get to send any packets

during this update period. In the first case, these subflows should be rerouted. In the second

case, rerouting them would lead to instability. We verify empirically in section 4.4.5 that in

cases of interest, the first situation is more represented. We refer to the scheme rerouting

only subflows for which feedback was received as Feedback-Dependant RSS (FDRSS). To

account for both cases, we could make the number of subflows to be dynamic, so that all

subflows are used within an update interval. We leave that extension for future work.

In any case, if N is not required by the congestion signal, we store information about

whether a subflow received path feedback using a one-hot vector B of σ bits.

Number of subflows rerouted per period

Suppose in the example of Figure 4.2 that all subflows for all senders choose the same path.

Before the optimal allocation is reached, half of the subflows (1.5σ) need to be rerouted, and

each update period sees 3 subflows rerouted. Therefore, σ/2 update periods are required, at

minimum, before the equilibrium is reached. In the transitory period where subflows are not

88



yet load-balanced properly, the system will have poor performance. The duration of that

transitory period has an impact on the average performance of the system. When RSS has

to deal with mouse flows, this might mean that the transitory period lasts for more than the

lifetime of the flow.

On the other hand, since RSS does not stop rerouting subflows even when a good load

balancing solution has been reached, the tradeoff is the following: rerouting more subflows per

update interval yields a short transitory period, but larger oscillations in the stable regime.

Rerouting multiple subflows per update period does not increase the memory footprint

for the schemes described earlier.

Frozen RSS

The initial allocation of subflows is random. The reactive aspect of RSS moves the assignment

of subflows to paths towards a uniform distribution. Once an optimal distribution is reached,

RSS still keeps on rerouting flows. Therefore, we introduce Frozen RSS, which measures at

each update interval how far the worst-performing subflow is from the best one and refrains

from rerouting any flow in cases where the two values are within some margin of each other.

The idea behind this scheme is that in the steady state regime, if no flows arrive or finish,

rerouting flows will push the system away from the optimal solution, and keep it oscillating

around an optimal allocation. If the optimum can be detected, then no rerouting is necessary.

The challenge with this scheme is to pick the correct threshold: a high threshold ensures

stability, but risks stabilizing far away from the optimal allocation.

Skipping some update periods does not increase the memory footprint for the schemes

described earlier.

Random-Time RSS

RSS uses a time period to regularly update the routing assignment of subflows. To test

if this periodicity is necessary, we introduce Random-Time RSS. Instead of periodically
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checking for congestion signals, Random-Time RSScan reroute flows on any packets. For

every ECN marked acknowledgment, the sender reroutes its corresponding subflow with a

small probability. We add a cooldown period after a subflow is rerouted where no ECN mark

trigger reroutes so that the intervention has time to take effect.

Random-Time RSSdoes not need N , Σ, or B. It therefore only requires keeping track of

the assignment between subflows and entropies.

MPTCP-inspired (QPRSS)

Through hardware implementation discussions with collaborators, it appeared that one simple

way to implement RSS on available hardware was to allocate one RDMA-like Queue Pair per

subflow. For practical reasons, this leads us to consider a scheme where each subflow keeps

its own congestion information. The subflows update their congestion window as if they were

flows. When a packet is about to be sent, the number of in-flight bytes for the next subflow

is compared with its congestion window. If the packet cannot be sent on this subflow, the

same attempt is made for the next subflow, until a subflow that can accommodate the packet

is found. If none of the subflows have credit to send the packet, it is delayed until the initial

subflow can accommodate it.

On a high level, we can expect the reactivity of RSS to play a synergetic role with

congestion control dynamics, both mechanisms having complementary reactions to congested

paths. Practically, this means that both share the load balancing burden and that similar

results to RSS should be observed with fewer subflows. From a memory standpoint, this adds

significant demand since congestion information needs to be replicated across subflows. This

scheme breaks a desirable property of RSS for loss recovery. Since RSS packets are sent in a

round-robin fashion, a receiver knows that all packets with sequence number n ≡ i mod σ

belong to subflow i. Therefore, if a receiver receives packets n and n+ 2σ, it can assume that

packet n + σ was lost. The round-robin assumption does not hold for QPRSS, hence loss

detection at the receiver is significantly more challenging. However, loss recovery is outside
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the scope of this work, thus we leave the exploration of methods to enable loss recovery for

QPRSS for future work.

Sirona

Finally, we noticed that the most recent congestion signals should be weighted more than

the signals from the start of the update period. Indeed, after rerouting a subflow, a packet

acknowledgment might come in at the beginning of the next period, and would not give

information about the impact of rerouting that flow. Therefore, we introduce two additional

schemes. First EWMA, which determines the worst performing subflow by computing an

exponential window moving average of the RTT for each subflow. EWMA does not need to

keep track of the number of packets received per subflow (N). Second, we propose Sirona,

which only looks at the worst measured RTT over a fraction of the update interval. Sirona

still relies on update periods but ignores all congestion signals or metrics coming in the first

100− f % of the update interval. In the last f %, Sirona keeps two registers: one for the

maximum RTT value encountered across all subflows, and one for the id of the subflow that

experienced this RTT.

4.4 Evaluations

4.4.1 Methodology

We run extensive simulations to provide insight into RSS and Sirona, and demonstrate up to

89 %, 41 %, and 42 % gains in max FCT over ECMP, Flowbender, and RPS respectively.

Simulation Environment

We use an extension of the htsim simulator [141], to simulate 1,024 nodes, 2-tiered fat-tree

topologies with no over-subscription. We set the MTU to 2KiB and each link’s latency

to 1.5 µs (i.e. a minimum RTT of 12 µs for traffic traversing both tiers). We compare
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two network settings: a symmetric case, with all links having 800Gbps capacity, and an

asymmetric case, with 8 out of the 32 aggregate switches having all of their links reduced

to 400Gbps. The congestion control algorithm used across experiments is DCTCP [121].

To separate the study of Sirona from loss recovery problems, experiments ran here assume

that switches trim packets [141] and only forward headers when their queues are full and

when they would have otherwise dropped packets. This feature is part of the specifications of

leading industry working groups [142]. The initial congestion window for all flows is set to

50 MTUs, or about 2 bandwidth-delay product.

For all experiments except sections 4.4.4 and 4.4.9, we set the number of subflows to 16,

and the update interval to 32 µs, or about 4 minRTT. We add a 25% jitter to the update

interval for every sender, to avoid rerouting synchronizations for experiments using some

version of RSS.

We report mean and maximum FCT as the main metrics for load balancing performance.

Since poor load balancing decisions translate into some paths being over-utilized and some

paths staying idle, FCT is directly proportional to the quality of the load balancing. In

particular, when all flows are of the same size, the maximum FCT will be experienced by the

flows competing with most other flows on their path.

Workload

For all experiments except in section 4.4.8 and 4.4.9, we consider the following traffic pattern:

we create pairs of senders and receivers where senders are in the first half of the nodes

(#0− 511) and receivers are in the second half of the nodes(#512− 1023). The exact pairings

are chosen at random, such that each receiver receives traffic from a single sender, and

each sender sends traffic to a single receiver. This simulates point-to-point connections that

maximize the stress on the load balancer.
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Schemes

We consider three classes of schemes that we compare Sirona to: baselines, RSS flavors, and

congestion metrics.

Baselines:

• ECMP (see 4.2.1): hashes flow-level information to pick a single path for all packets in

a flow, and maintains that path for the lifetime of the flow.

• Flowbender (see 4.2.1): similar to ECMP but proactively reroutes flows that see high

ECN marking rates. We choose the same parameters as advised in the paper, i.e. an

ECN threshold of 0.05 and several consecutive congested periods before choosing to

reroute of 1.

• RPS (see 4.2.1): chooses a new random path for every packet, but is oblivious to path

heterogeneity or network conditions.

• MPTCP (see 4.1d): opens different connections on each subflow, trading high memory

utilization and complexity for better performances.

• Unreactive Subflow Spraying (USS): To differentiate between the reactive and the

subflow spraying aspects of RSS, we introduce USS, with which flows are divided into

randomly routed subflows, but senders do not change subflows’ routing during their

lifetime. USS should perform slightly worse than RPS given the coarser granularity.

We set the number of subflows to be 16, for a fair comparison with Sirona.

• Vanilla RSS: as described in 4.2.2 and [2].

Flavors: To understand the impact of various parameters on Sirona’s performance, we

compare the following versions of RSS:

• Random-Time RSS (RTRSS, see 4.3.3): instead of periodically rerouting subflows,

randomly choose to do so when receiving congestion signals.
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Figure 4.3: FCT distribution for baseline schemes and Sirona.

• Frozen RSS (see 4.3.3): when the variance across subflows’ congestion metric is low

enough, skip the update interval.

• QPRSS (see 4.3.3): perform congestion control on a subflow basis.

• FDRSS (see 4.3.3): reroute the worst performing subflow among those for which

feedback was received.

Metrics: To determine which subflow is performing the worst and should be rerouted,

multiple metrics can be used:

• Vanilla RSS: use the average of RTT values received in acknowledgments over the

update period.

• EWMA: Exponential Window Moving Average of the RTT for each subflow.

• Max: the maximum RTT value experienced for a subflow over the entire update interval.

• ECN: the fraction of ECN marked acknowledgments received.
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4.4.2 Sirona fairs similarly to RSS

We show in Figure 4.3 the Cumulative Distribution Function (CDF) of the FCT for all the

baseline schemes. Figures 4.3a and 4.3b respectively show results for the symmetric and

asymmetric cases described in section 4.4.1.

In both cases, ECMP has a high risk of hash collision. In the asymmetric case, it has the

added issue of having an equal probability of assigning flows to the 800Gbps and 400Gbps

paths. Hence, ECMP yields 50 % and 81 % (respectively 51 % and 89 %) higher average and

max FCT for the symmetric setup (respectively the asymmetric setup) than Sirona.

USS has finer granularity than ECMP, but is not reactive and therefore suffers from the

same problem as ECMP in the asymmetric setup. Therefore, while it results in only 4 %

higher mean and 42 % higher max FCT in the symmetric case than Sirona, these numbers

shoot up to 27 % and 67 % respectively in the asymmetric case. The reactive nature of RSS

and Sirona is therefore detrimental to performance, in particular in asymmetric setups.

Flowbender is on the same granularity level as ECMP, and therefore can only achieve

non-optimal load balancing. Its rerouting capabilities make it suffer less from heterogeneity

in the offered paths, with 43% and 42% higher mean and max FCT than Sirona in the

symmetric case, compared to 42% higher both mean and max FCT than Sirona.

RPS achieves very high-performance load balancing in symmetric setups, as it has per-

packet load balancing granularity. In the symmetric case, it outperforms Sirona in mean

FCT slightly (3%) and does only slightly worse in max FCT (21%). In the asymmetric case,

it is forced to reduce the sending rate for all paths due to the 400Gbps links and performs

23% and 42% worse than Sirona in mean and max FCT.

As expected, MPTCP makes proper use of subflows and is able to outperform all other

schemes. Sirona is within 26% in mean FCT (23%) and 30% in max FCT (16%) in the

symmetric case (respectively the asymmetric case).

Finally, Sirona is within 2% in both mean and max FCT of RSS, for both symmetric and
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Figure 4.4: Timeseries of the number of subflows using each path. Each solid line corresponds
to an exit port of the switch. Black dashed lines represent the optimal number of subflows
per path.

asymmetric cases, showing that it yields the same benefits in general while requiring much

less memory.

4.4.3 Load Balancing Performance

Figure 4.4 shows a time series of the number of subflows assigned to each path for Sirona. In

the same experiment as in Figure 4.3, we record for each packet coming out of one of the ToR

switches hosting senders the timestamp at which it departed the switch, the subflow, and the

sender to which the packet belongs. We then count in increments of 1.5 update intervals the

number of unique (sender ID, subflow ID) coming out of each port of the switch. Results are

then averaged using a rolling window.

In the symmetric setup, all paths are similar, hence we expect them to all hold the same

number of subflows. Figure 4.4a shows this behavior, with the number of subflows per path

oscillating around the expected value represented by the black dashed line. In Figure 4.4b,

8 of the 32 aggregate switches (and therefore 8/32 paths) have a reduced capacity. Sirona

successfully adapts and reduces the number of subflows for the 8 slow paths to about half of

that of the full capacity paths.
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Figure 4.5: Heatmap of the maximum completion time as a function of the number of subflows
and the update interval (in units of min RTT).

4.4.4 Sensitivity Analysis

We inspect the sensitivity of some of the different versions of RSS we introduced to the values

of their parameters. Since the asymmetric scenario puts more stress on the load balancing

capacities, we only show results for that topology in this section.

Vanilla RSS

We show in Figure 4.5 the impact of the original RSS parameters on the maximum FCT.

In general, adding more flows helps with reducing the FCT: since the granularity of the

load balancing is finer, better load balancing solutions can be attained. Similarly, shorter

update intervals help with both making RSS more reactive and reducing the transitory period.

However, a combination of very short update intervals and a high number of subflows yields

poor results. When the update interval is too short to ensure that all subflows are able to

send packets and receive feedback on their current path, some subflows on underutilized

paths could be rerouted while subflows on congested paths will never have priority.

Frozen RSS

In Frozen RSS, at the end of each update period, the relative difference between the congestion

metric of the worst-performing subflow and the best-performing subflows is compared to a
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Figure 4.6: Sensitivity analysis for different flavors of RSS.

threshold τ . We plot in figure 4.6a the impact of this threshold on the mean, 99th percentile,

and max FCT. When the threshold is too low, very few or no updates are skipped, missing

the impact of this scheme. When the threshold is too high, the scheme stabilizes far from the

optimal load balancing allocation.

While there exists a value of the threshold that minimizes the mean FCT for this setup,

the value of the maximum flow completion time varies significantly with no clear pattern.

Therefore, it does not seem possible to determine a clear value for the parameter.
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EWMA

When a new packet acknowledgement with RTT RTTemp is received, the new RTT estimate

RTTnew for the corresponding subflow is updated from its previous value RTTold in the

following way:

RTTnew = αRTTemp + (1− α)RTTold

Therefore, the parameter α determines the relative importance of new measurements in the

estimation of the RTT.

Figure 4.6b shows how increasing the weight of the last RTT measurements improves the

performance of RSS with EWMA.

Random-Time RSS

In Random-Time RSS, each packet acknowledgment marked with ECN has a probability ϵ of

triggering a rerouting for the subflow it belongs to, as long as the subflow was not already

rerouted recently. The value of the probability threshold is a predetermined parameter that

we study in Figure 4.6c. Here again, the behavior of the maximum FCT does not follow

a clear pattern with ϵ. The mean FCT however describes a similar pattern as other RSS

schemes: as espilon increases, the rate at which flows are being rerouted also increases. This

constitutes the reactive part of RSS, and therefore decreases the mean FCT. Past a threshold

however, Random-Time RSSreaches a stable state, and higher rerouting probabilities do not

have an effect anymore.

Sirona

To be sure to reroute the right subflow, Sirona needs at least one data point for the maximum

RTT per subflow. In a fraction of the update interval of duration t, for a congestion window
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Figure 4.7: Comparison of the different RSS Flavors with Sirona.

w (in packets), and assuming no packet trims are received during t,

w+⌊t/RTT ⌋−1∑
c=w

c

packets acknowledgments will be received by the sender. Thus, the condition can be written

as
w+⌊t/RTT ⌋−1∑

c=w

c > σ

We could set the value of t dynamically based on the current size of the congestion window,

but default to a simpler, empirically motivated scheme where we pick t to be half of the

update period, i.e. t = 2RTT . We define ϕ as the ratio of t to the update interval.

As shown in Figure 4.6d, mean, 99th percentile, and maximum FCT values all stabilize

once about 35% of the update period is considered. At the highest value (1), all the update

interval is taken into account to determine the worst-performing subflow.
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4.4.5 RSS flavors

Using the lessons from 4.4.4, we evaluate the different versions of RSS against Sirona in

Figure 4.7. As expected, QPRSS benefits from both the reactive effects of RSS and the

added interventions of the congestion control algorithm on the subflow level. The number of

subflows for QPRSS is the same as for other RSS schemes, giving it a significant advantage

at the cost of significantly increased memory footprint (as described in 4.3.3). RTRSS suffers

from too random rerouting decisions, rerouting subflows experiencing only transient delay,

yielding up to 8% increase maximum FCT. Frozen RSS slightly suffers from the challenge of

choosing the right threshold value, but stays within 5% of Sirona. Finally, Sirona and RSS

display very similar behaviors, with less than 2% maximum FCT difference between them.

4.4.6 Metrics

The choice of the metric to determine the worst-performing subflow has little impact on the

FCT. RSS is adaptable to various congestion signals: Vanilla RSS, Maximum RTT, mean

RTT, EWMA, and Sirona are all within 3% of each other, both in terms of mean and max

RTT, and both for symmetric and asymmetric setups. Therefore, looking at the worse RTT

in Sirona allows us to save significant memory while having similar performances to RSS.

4.4.7 Flow size

RSS has two components: dividing flows into subflows, and reacting dynamically to congestion.

When flows are short, RSS does not have time to react to congestion and only benefits from

having more subflows. We plot in Figure 4.8 the maximum FCT for different flow sizes,

in the symmetric setup. For the smallest flows (1 MTU), all the schemes are equivalent

and therefore perform similarly. As the size of messages increases, Flowbender and ECMP

suffer from a higher probability of flow collision. For small message sizes, USS equals RSS

and Sirona’s performance, showing that all the gains are indeed stemming from the subflow
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Figure 4.8: Impact of the flow size on FCT.

spraying part of RSS. While RPS initially benefits from finer granularity than RSS, as the

message size increases and reactivity plays an increasing role in the final performance, RSS

ends up outperforming RPS.

4.4.8 Web Search Traffic

Using the distribution in [143, Fig. 6.a.], we generate a web search traffic pattern by sampling

from the same distribution and adjusting the interarrival between flows to obtain a load of

50% on the network. We then observe in Figure 4.9 the FCT, split by the flow size’s quintile.

For example, Figure 4.9a shows the distribution of the FCT for the 20% smallest flows.

Overall, ECMP achieves 33% and 35% higher mean and max FCT than Sirona. Similarly,

Flowbender, RPS, and USS respectively yield 20%, 26%, and 54% higher mean FCT, and

17%, 24%, and 49% higher max FCT. For smaller flows, the reactivity part of RSS or Sirona

does not have time to get into action, and the only difference in schemes is the use of subflows.

For the quintile with the highest flow sizes, RSS and Sirona can reroute flows away from

congested paths, yielding extra benefits.
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Figure 4.9: FCT distributions for a web search trace, split by quintile of flow size.

4.4.9 All to All traffic

We plot in Figure 4.10 the CDF of the FCT for the baseline schemes using an A2A traffic

matrix for the symmetric (4.10a) and asymmetric (4.10b) topologies. For simulation time

purposes, this experiment runs on a 16-node pod, with 4 6-port ToR switches and 2 4-port

aggregate switches. The asymmetric topology has 1 aggregate switch with 50% capacity.

In the symmetric case, all schemes perform fairly similarly in mean FCT. Sirona also

achieves similar performances in max FCT as Flowbender, RPS, and an MPTCP, and

outperforms USS, and ECMP by 10%, 19%, and 25%. Compared to Figure 4.3a, MPTCP

yields worse max FCT relative to Sirona, suggesting that the per-subflow congestion window
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Figure 4.10: FCT distribution for baseline schemes and Sirona for an A2A traffic pattern.

can suffer from outdated information.

In the asymmetric case, for maximum FCT, Sirona fares similarly to MPTCP (< 1%),

and improves on RPS (9%), Flowbender (20%), USS (26%) and ECMP (27%).

4.4.10 Progressive Rollout

Datacenter clusters often require progressive rollout of updates both to minimize the impact

of potential issues and to avoid complete unavailability of resources during the update.

To deploy a scheme like Sirona, a phase with senders using Sirona and senders using

another load balancing scheme co-existing would be necessary. For every baseline scheme, we

run an experiment with an increasingly large fraction of senders using Sirona, to simulate

servers progressively adopting Sirona. We plot in Figure 4.11 the mean FCT averaged over

senders using Sirona, and over senders using the other load balancing scheme.

Adding some Sirona servers in the cluster reduces the average FCT for all schemes but

MPTCP: Sirona achieves better load balancing than most other schemes, and therefore

removes some of the adversarial randomness negatively impacting performances. MPTCP

only slightly suffers from sharing the network with Sirona traffic.
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Figure 4.11: Mixed Sirona/other scheme clusters

4.5 Related Work

We detail in this section related prior work in datacenter load balancing literature and point

out significant differences with Sirona.

PLB [119] builds on top of Flowbender, which we compared RSS to. The differences

between PLB and Flowbender lie in important implementation aspects (PLB uses the IPv6

Flow Label for entropy, and reroutes packets during idle periods instead of in the middle

of flows to avoid issues with packet ordering). Our implementation of Flowbender does

not particularly suffer from the issues motivating the upgrade from Flowbender to PLB

(in particular, we assume support for out-of-order packets). Hermes [144] builds on top of

Flowbender and extends the congestion signal to a mix of ECN and RTT. Therefore, most of

the reasons for Sirona outperforming Flowbender hold when comparing Sirona to PLB or

Hermes.

Similarly to Sirona, MPTCP [122] divides flows into subflows to take advantage of

finer load balancing granularity. MPTCP subflows each have their own congestion window,

similar to QPRSS. While QPRSS outperforms Sirona, the memory requirements and the

implementation complexity of MPTCP [126] make it particularly challenging to implement
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in hardware. On top of this, MPTCP remains less flexible than Sirona in terms of path

selection: for example, MPTCP would be unable to use new paths appearing during the

lifetime of a flow.

Presto [145] also relies on dividing flows into flowcells, or contiguous 64 kB flow segments.

One advantage of this approach is to avoid re-ordering issues for mouse flows with flow

sizes smaller than 64 kB. However, Presto deals with asymmetric topologies by taking load

balancing decisions at an end-to-end level, significantly increasing the complexity of the

system, and requiring end-point knowledge of the network topology. In [131], authors leverage

flowlet switching (as introduced in [146] to divide TCP flows while avoiding packet reordering)

to perform flow balancing. Practically, flows are divided into bursts of packets separated

by an idle period, and new routing decisions are made during the idle periods. Flowlet

switching benefits from lower granularity and elasticity in load balancing and minimizes

packet reordering, but has been shown to react poorly to congestion [144]. On the other hand,

Sirona is flexible to dynamic network topologies and requires minimal space or computation

on end-hosts by leveraging the existing hashing capabilities of datacenter switches.

DRB [147] and RPS [123] both rely on per-packet load balancing granularity and therefore

achieve good load balancing performances in symmetric scenarios. However, as shown in

section 4.4, RPS adjusts its sending rate in asymmetric scenarios to the slowest link available.

DRB circumvents this problem by giving all servers perfect knowledge of the network topology.

DRILL [125] is also based on per-packet load balancing but focuses on switch-level congestion,

and does not consider heterogeneous topologies. Instead, Sirona requires no knowledge of the

topology, and can seamlessly adjust to failures or new paths.

CONGA [148] and Juniper VCF [149] both rely on specialized switch hardware to load

balance the network. Hula [128] relaxes this requirement and builds on programmable

hardware, but all three require modifications of the network switches, while Sirona only runs

on end-hosts.
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4.6 Summary

In this chapter, we introduce Sirona, a memory-efficient version of Reactive Subflow Spray-

ing 4.2.2. Sirona is particularly suited for hardware deployments and is currently being

implemented for potential deployment at a major datacenter company. We show through

large-scale simulations that Sirona consistently achieves FCTs within a few percent of RSS,

and generally exhibits similar behaviors in various scenarios. We also extend the analysis of

RSS to study alternative schemes and provide insight to identify key performance parameters.
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Chapter 5

Conclusion

This dissertation has presented three systems that address fundamental challenges in modern

networks, from datacenter task scheduling to backbone network performance and load

balancing efficiency. Through rigorous analysis and modeling, we have built principled

approaches to networking systems, relying on combinatorial theory, queueing theory, and

coding theory.

Nona introduces stochastic scheduling, to show the potential of randomized algorithms

for datacenter task scheduling. Through a queueing theoretic model, we incorporate network

queueing costs in the scheduling problem and show how the network awareness of Nona

makes it outperform but multiple orders of magnitude traditional task scheduling solutions

in constrained networking environments.

LINC points out the potential for backbone network operators of network coding solutions.

By focusing on in-network interventions, we show that network coding approaches also

successfully reduce retransmissions and effective network latency without needing end-host

control. We build a rigorous mathematical model to understand the sources of LINC’s gains

and verify its assumptions in simulation.

Sirona extends previous work based on packet spraying and reactive load balancing schemes

by reducing by 3× the memory footprint while keeping the load balancing capabilities of
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sub-flow-level schemes and the adaptability of reactive schemes.

As network demands continue to grow and evolve, the need for innovative solutions

across all layers of network infrastructure becomes increasingly critical. This dissertation

demonstrates that significant improvements are possible through careful and explainable

system design based on time-tested theoretical results.
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