
Untangling Mechanized Proofs
Clément Pit-Claudel
cpitcla@csail.mit.edu

MIT CSAIL
Cambridge, Massachusetts, USA

Abstract
Proof assistants like Coq, Lean, or HOL4 rely heavily on
stateful meta-programs called scripts to assemble proofs. Un-
like pen-and-paper proofs, proof scripts only describe the
steps to take (induct on 𝑥 , apply a theorem, …), not the states
that these steps lead to; as a result, plain proof scripts are es-
sentially incomprehensible without the assistance of an in-
teractive user interface able to run the script and show the
corresponding proof states.

Until now, the standard process to communicate a proof
without forcing readers to execute its script was to manu-
ally copy-paste intermediate proof states into the script, as
source code comments — a tedious and error-prone exercise.
Additional prose (such as for a book or tutorial) was likewise
embedded in comments, preserving executability at the cost
of a mediocre text-editing experience.

This paper describes a new approach to the development
and dissemination of literate proof scripts, with a focus
on the Coq proof assistant. Specifically, we describe two
contributions: a compiler that interleaves Coq’s output
with the original proof script to produce interactive web-
pages that are complete, self-contained presentations of
Coq proofs; and a new literate programming toolkit that
allows authors to switch seamlessly between prose- and
code-oriented views of the same sources, by translating
back and forth between reStructuredText documents and
literate Coq source files. In combination, these tools offer
a new way to write, communicate, and preserve proofs,
combining the flexibility of procedural proof scripts and the
intelligibility of declarative proofs.

CCS Concepts: • Software and its engineering→ Docu-
mentation; • Theory of computation → Logic and ver-
ification.

Keywords: literate programming, formal verification, proof
browsing, proof presentation

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SLE ’20, November 16–17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8176-5/20/11.
https://doi.org/10.1145/3426425.3426940

ACM Reference Format:
Clément Pit-Claudel. 2020. Untangling Mechanized Proofs. In Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Soft-
ware Language Engineering (SLE ’20), November 16–17, 2020, Vir-
tual, USA. ACM, New York, NY, USA, 20 pages. https://doi.org/10.
1145/3426425.3426940

1 Introduction
In Coq [50], as in many other proof assistants, propositions
are encoded as types. To prove that a given proposition
holds, a user must exhibit an inhabitant of that type (a proof
term). For example, the following is a Coq proof that the
conjunction operator ∧ commutes:
Definition and_comm : ∀ A B, A ∧ B → B ∧ A :=

fun A B ab ᒗᓦ conj (proj2 ab) (proj1 ab).
The proofs of complex propositions can be quite large,

so Coq proofs terms are typically generated using meta-
programs called proof scripts. A proof script is a sequence of
individual steps (such as invoking a lemma, rewriting equiv-
alent expressions, or performing a case analysis) establish-
ing the correctness of a proposition: each step, or tactic, pro-
duces a new set of hypotheses and propositions (goals), un-
til all goals have been solved (discharged). Tactics are such
a convenient way to write mechanized proofs that they are
common to a wide range of proof assistants, spanning all
the way from LCF (1979), to Coq (1989), HOL4 (2008), Lean
(2017), and F* (2019). As an example, the three Coq proofs be-
low each establish the correctness of the proposition above:
Lemma and_comm0 : ∀ A B, A ∧ B → B ∧ A.

intros A B ab.
destruct ab as (a, b).
constructor. apply b. apply a.

Qed.
Lemma and_comm1 : ∀ A B, A ∧ B → B ∧ A.

intros ? ? (? & ?).
split. all: assumption.

Qed.
Lemma and_comm2 : ∀ A B, A ∧ B → B ∧ A.

tauto.
Qed.

In a sense, the variations between these proofs are imma-
terial, as the intricacies of a Coq proof do notmatter: if Coq’s
kernel accepts a proof, users can feel reasonably confident
that the proof is correct. For many uninteresting proofs, the
readability of the proof script is of little consequence.

And yet, for some proofs, readability matters. This is par-
ticularly true when a proof is used to communicate ideas,
such as an interesting proof technique or an unexpectedly

155

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/3426425.3426940

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

tricky corner case, or when introducing students to formal
reasoning. When all that matters is to check that a prop-
erty holds, it suffices to exhibit a convincing (here, machine-
checked) proof — any proof. But when one starts wondering
why a statement holds, the readability of the proof matters.

Unfortunately, as proofs increase in complexity, proof
scripts become hard to read: unlike traditional pen-and-
paper proofs, the written part of a proof script records
only the steps taken, not the states that they led to. Con-
cretely, while a pen-and-paper mathematician would write
“
∫
𝑋

∫
𝑌
𝑓 (𝑥,𝑦) =

∫
𝑌

∫
𝑋
𝑓 (𝑥,𝑦) by Fubini’s theorem”, a mathe-

matician writing proofs in Coq would only write “rewrite
fubini”, and the proof assistant would transform the left-
hand side into the right-hand side and display both. With-
out an interactive user interface to display the goals that
tactics operate on, or heavy commenting, or very specific
proof-writing styles, non-trivial proof scripts are essentially
inscrutable (as an example, in a Coq script like inversion IH;
eauto, the inversion tactic will create some number of goals
in an order determined by the definitions of the types that
IH refers to, and eauto will solve some, none, or all of them
using a global database of proof hints).

How do authors communicate mechanized proofs to their
readers, then? One approach, used in Coq’s reference man-
ual (written in LaTeX [48], then reStructuredText [49]) as
well as books such as the Coq’Art [3] or Mathematical Com-
ponents [34], is to use a markup language directly, incorpo-
rating code or proof scripts in special environments and cap-
turing the prover’s output with varying degrees of automa-
tion. Unfortunately, the pleasant prose-writing experience
offered by this approach comes at the cost of a significantly
degraded proof-writing experience: authors (and readers!)
cannot step through the code in an interactive editor with-
out first reassembling a source code file, as the marked-up
document is not executable on its own. As such, this ap-
proach is poorly suited to ongoing proof developments.

Instead,most proof-heavyCoq literature, including books
such as Software Foundations [36], Certified Programming
with Dependent Types [7], or Programs and Proofs [42], is
distributed as annotated source files compiled to HTML or
LaTeX using the Coqdoc tool. In this style, determined au-
thors (it takes a special kind of grit to edit an entire book out
of source code comments) use special “literate” comments
to annotate proof scripts with explanatory prose and plain-
text snapshots of the intermediate proof states printed by
the author’s IDE:
(** The [∧] operator commutes: **)
Lemma and_comm : ∀ A B, A ∧ B → B ∧ A.

intros A B ab.
(** ᓶᓴ
A, B : Prop
ab : A ∧ B
ᓼᓿᓿᓽᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾᓾ
B ∧ A ᓭᓯ **)
destruct ab as (a, b). …

Manually copy-pasting goals and messages is cumber-
some, error-prone, and fragile: if the output produced by a
tactic changes (due to a prover or library update, or a change
to a local tactic definition), the hardcoded plain-text snap-
shots embedded in the proof will become stale.
It’s time for something better. This paper introduces
Alectryon, a collection of tools intended tomake it much eas-
ier towrite and distribute documentsmixing Coq proofs and
prose.The core of Alectryon is a wrapper around Coq’s APIs
that records goals and messages, plus an HTML backend
that interleaves these outputs with the original proof script.
This process generates a interactive document that readers
can use to explore proofs without running the proof assis-
tant. Additionally, because Alectryon records all of Coq’s
output, this document forms a robust record of a proof de-
velopment, immune to bit rot and suitable for long-term
archival. Concretely, authors use lightweight directives to
specify what should be displayed by default, and Alectryon
runs Coq and generates an interactive webpage. The follow-
ing listing shows an annotated proof (top) and a snapshot
of Alectryon’s output (bottom), which embeds the goals and
error messages produced by Coq 1:
Lemma ge0 : ∀ n, 0 ≤ n.

induction n. (* .unfold *)
- (* n ← 0 *)
constructor.

- (* n ← S _ *)
Fail exact IHn. (* .unfold .fails .no-goals *)
constructor.
assumption.

Qed.

Lemma ge0 : ∀ n, 0 ≤ n.
 induction n.

 - (� n ← 0 �)
 constructor.
 - (� n ← S _ �)
 exact IHn.

 constructor.
 assumption.
Qed.

0 ≤ 0

0 ≤ S n

In environment
n : nat
IHn : 0 ≤ n
The term "IHn" has type "0 ≤ n"
while it is expected to have type "0 ≤ S n".

n : nat IHn : 0 ≤ n

1A note on interactivity:This paper is about generating interactive web-
pages, but interactivity is hard to convey in PDF. For readers curious to
see Alectryon in action, we have uploaded all listings and webpages to
https://alectryon-paper.github.io/.

156

https://alectryon-paper.github.io/snippets/induction.html
https://alectryon-paper.github.io/index.html
https://alectryon-paper.github.io/

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

More ambitiously, Alectryon is the first step towards a
literate programming environment for Coq. Like Coqdoc,
Alectryon invites authors to place prose in special literate
comments. Unlike Coqdoc, however, Alectryon uses a well-
known markup language, reStructuredText (reST) [22], in-
side these special comments (Coqdoc uses its own markup
language), and automatically captures the prover’s output,
obviating the need for manual copy-pasting. A bidirectional
translation utility allows authors to switch seamlessly be-
tween two views of their documents: the Coq view, where
prose is embedded in special comments and the whole file
is a valid Coq module, and the reST view, where Coq code
is embedded into special blocks (directives) and the whole
file is a valid reST document. In literate programming par-
lance [28], instead of working with a literate source for-
mat to be woven into reST documentation or tangled into
executable Coq code, Alectryon supports tangling directly
from the woven representation (generating Coq files from
reST documents), as well as weaving directly from the tan-
gled representation (generating reST documents from Coq
source files). While this places restrictions on the complex-
ity of the weaving, it allows authors to tackle the distinct
tasks of writing prose and writing proofs separately, with
optimal tooling: with Alectryon, we do not have to enhance
Coq IDEs to teach them about editing reST prose, and we
do not have to enhance reST editors to teach them how to
step through Coq proofs; instead, authors can simply switch
back and forth between woven and tangled views, using
appropriate editors for each. Integrating this bidirectional
translation mechanism into an IDE such as Emacs is trivial.
Our two main contributions are the following:
• An architecture to record and visualize Coq proofs, facili-

tating sharing and interactive exploration of proof scripts.
• A bidirectional translator between woven and tangled

documents, enabling seamless editing of prose and code.
The rest of this paper offers a detailed tour of Alectryon’s
features in Section 2, dives into its implementation in Sec-
tion 3, presents case studies and discusses migration from
existing document formats to Alectryon in Section 4, and
discusses related work and some of our design decisions in
Section 5.

2 A Tutorial
Alectryon can be used as a standalone command line ap-
plication to compile plain proof scripts, or as a Docutils
plugin to compile literate Coq proofs annotated with ex-
planatory prose (Docutils [21] is the standard reST compi-
lation toolchain). The command line application is a stan-
dard compiler toolchain, including a number of frontends
(coq, coq+rst, coqdoc, rst, json) and backends (coq+rst, rst,
snippets-html, webpage, json, and lint, though not all combi-
nations are valid). This section showcases Alectryon by ex-
ploring the most useful pipelines.

Recording proofs: coq → webpage Themost basic facility of-
fered by Alectryon compiles a Coq document into a stan-
dalone webpage. The resulting webpage looks like a regu-
lar source code listing at first, except for small bubbles in-
dicating interactive elements (top). Tapping a sentence re-
veals the corresponding output; a shaded background dis-
tinguishes it from neighboring inputs (bottom).
Lemma rev_rev {A} (l: list A) : List.rev (List.rev l) = l.
Proof.
 induction l; cbn.
 - (� l ← [] �)
 reflexivity.
 - (� l ← _ �� _ �)
 rewrite rev_app_distr.
 rewrite IHl.
 cbn. reflexivity.
Qed.

 (tapping or hovering reveals output)
Lemma rev_rev {A} (l: list A) : List.rev (List.rev l) = l.
Proof.
 induction l; cbn.
 - (� l ← [] �)
 reflexivity.
 - (� l ← _ �� _ �)

 rewrite rev_app_distr.

 rewrite IHl.

 cbn. reflexivity.
Qed.

rev (rev l �� a �� nil) = a �� l

rev (a �� nil) �� rev (rev l) = a �� l

rev (a �� nil) �� l = a �� l

A : Type a : A l : list A IHl : rev (rev l) = l

Finally, keyboard commands can be used to focus on one
goal, and with just a bit of CSS we can replicate the multi-
pane interface traditionally used in Coq IDEs:
Lemma Gauss:
 ∀ n, 2 * (sum n) = n * (n + 1).
Proof.
 induction n.
 - (� n ← 0 �)
 reflexivity.
 - (� n ← S _ �)
 cbn [sum].
 rewrite Mult.mult_plus_distr_l.
 rewrite IHn.

change (S n) with (1 + n)

2 * S n + 2 * sum n = S n * (S n + 1)

n : nat
IHn : 2 * sum n = n * (n + 1)

In most cases, users just need to invoke alectryon.py in-
stead of coqc to generate these webpages, and, in line with
Tankink et al. [46], we argue that they represent a much bet-
ter way to distribute proofs than simply sharing plain Coq

157

https://alectryon-paper.github.io/snippets/folded.html
https://alectryon-paper.github.io/snippets/ide.html

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

files: unlike plain sources, which are subject to rapid bit rot
as new versions of Coq appear, they offer a complete and
permanent record of a proof, suitable for archival.

Controlling output For readability, Alectryon recognizes
special flags placed in comments to let users control what
should be included in the output: .in for input sentences,
.goals and .messages (collectively .out) for Coq’s output, or
.all/.none to include/hide everything. The exact semantics
depend on the polarity of the first inclusion option encoun-
tered: .x .ymeans .none .x .y, i.e. include .x, .y, and nothing
else; .no-x .no-y means .all .no-x .no-y, i.e. include every-
thing but .x and .y. An additional pair of flags (.fold and
.unfold) controls whether the output should be shown or
hidden by default (clicking the input toggles the visibility
of the output). Lastly, .fails can be used to indicate that a
command is expected to display an error message.

These annotations allow authors to highlight important
steps by unfolding the corresponding goals. It also enables
authors to hide irrelevant or redundant bits such as Require
statements, Sections, or the Show Proof commands used in the
following example to demonstrate the contribution of indi-
vidual tactics to the construction of a proof term:

Section classical. (* .none *)
Context (excl: ∀ A, A ∨ ~ A).
Goal ∀ A, ¬¬A → A.
intros A notnot_A.
Show Proof. (* .messages .unfold *)
destruct (excl A) as [a | na].
Show Proof. (* .messages .unfold *)
- assumption.

Show Proof. (* .messages .unfold *)

 Context (excl: ∀ A, A ∨ ~ A).
 Goal ∀ A, ¬¬A → A.
 intros A notnot_A.

 destruct (excl A) as [a | na].

 - assumption.

(λ (A : Prop) (notnot_A : ¬ ¬ A), ?Goal)

(λ (A : Prop) (notnot_A : ¬ ¬ A),
 let o : A ∨ ¬ A �= excl A in
 match o with
 | or_introl a �> ?Goal
 | or_intror na �> ?Goal0
 end)

(λ (A : Prop) (notnot_A : ¬ ¬ A),
 let o : A ∨ ¬ A �= excl A in
 match o with
 | or_introl a �> a
 | or_intror na �> ?Goal
 end)

Compiling reST documents: rst+coq → webpage To com-
pile reST documents, Alectryon plugs itself into theDocutils
reST compiler by registering a custom ၼၽ coqၭၮ environment

(directive) before handing off control to the standard compi-
lation toolchain. The Docutils compiler then delegates pro-
cessing the contents of these directives back to Alectryon,
which gathers their contents, feeds them to Coq, and inter-
leaves the corresponding outputs with the original sources.
This process can be used to plug Alectryon into various doc-
ument preparation systems, blogging platforms, and docu-
mentation generators:

Booleans
ᓼᓿᓿᓽᓾᓾᓾᓾ
The built-in :coqid:`Boolean <Coq.Init.Datatypes.bool>`
type has two constructors:
ၼၽ coqၭၮ unfold no-in

Print bool.
ၼၽ topicၭၮ Induction principles

Coq automatically defines an induction principle:
ၼၽ coqၭၮ unfold

Search (∀ b: bool, _ b) "_ind".

Booleans
The built-in Boolean type has two constructors:

Induction principles

Coq automatically defines an induction principle:

Inductive bool : Set �=
 true : bool | false : bool

Search (∀ b: bool, _ b) "_ind".

bool_ind:
 ∀ P : bool → Prop,
 P true → P false → ∀ b : bool, P b

Compiling literate Coqfiles: coq+rst → webpage Alectryon
recognizes comments delimited with special markers (*| …
|*) as reST fragments, and generates a webpage using the
Docutils compiler and its own recording facilities to gener-
ate an interactivewebpage.The example below produces the
same output as the reST snippet above:

(*|
Booleans
ᓼᓿᓿᓽᓾᓾᓾᓾ
The built-in :coqid:`Boolean <Coq.Init.Datatypes.bool>`
type has two constructors:
|*)
Print bool. (* .unfold .no-in *)
(*|
ၼၽ topicၭၮ Induction principles

Coq automatically defines an induction principle:
|*)
Search (∀ b: bool, _ b) "_ind". (* .unfold *)

158

https://alectryon-paper.github.io/snippets/classical.html
https://alectryon-paper.github.io/snippets/doc.html

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

Toggling between woven and tangled views In traditional
literate programming, a single literate document is woven
into a text-oriented format (such as reST or LaTeX) and
tangled into executable source code. In Alectryon, there is
no single source of truth: both formats are equally valid
sources. Woven reST sources can be tangled, and Coq code
can be untangled (woven). For this to work, the tangling pro-
cess preserves all the prose as special (*| … |*) comments,
and the untangling turns these special comments back into
prose, and wraps code into ၼၽ coqၭၮ directives. This bidirec-
tional translator is exposed through the command line and
through a simple Emacs mode. Additionally, in Coq mode,
the Emacs mode invokes Alectryon with its lint backend
to untangle the document and check it for reST mistakes
(such as syntax errors or broken references), and reports
these mistakes as overlays in the Coq code (careful posi-
tion tracking makes it possible to translate error locations
in both directions and to keep the author’s position in a doc-
ument when switching between Coq and reST). A side-by-
side screenshot is provided in Figure 9, in the appendix.

Recording and caching Coq’s output: * ᑴᓰ json Instead
(or in the process) of generating a webpage, Alectryon sup-
ports generating a JSON file containing Coq’s responses for
further processing — these files can then be loaded by Alec-
tryon’s Docutils module to avoid re-invoking Coq. Previous
literature [46] calls this type of record a movie (here shown
in compact form for space):
Let inv b: negb (negb b) = b.

destruct b. all: reflexivity.
Qed.
Print Assumptions inv.

[{"sentence": "Let inv b: negb (negb b) = b.",
"goals": [{"conclusion": "negb (negb b) = b",

"hypotheses": [{"names": ["b"],
"type": "bool" }]}]}, "\n ",

{"sentence": "destruct b.",
"goals": [

{"conclusion": "negb (negb true) = true" },
{"conclusion": "negb (negb false) = false" }]}, " ",

{"sentence": "all: reflexivity." }, "\n",
{"sentence": "Qed." }, "\n",
{"sentence": "Print Assumptions inv.",
"responses": ["Closed under the global context"]}]

Caching movies has multiple benefits:
1. Recompiling documents after editing the prose is much

faster, since Coq snippets do not have to be re-evaluated;
this makes the overhead of compiling documents with
Alectryon essentially imperceptible.

2. Deploying a website or recompiling a book does not re-
quire setting up a complete Coq development environ-
ment. This is particularly useful when multiple authors
are responsible for producing different parts of a docu-
ment, like book chapters or blog posts: each author only
needs to install the Coq libraries required for their own

part of the document, and each part can even require dif-
ferent versions of Coq, either because of possibly incom-
patible plugins or because of bit rot: old proofs may be
of historical value but may not compile with the latest re-
leases of Coq, for example. In that sense, movies provide
a robust form of long-term storage for Coq documents.

3. Changes in output can be inspected by comparing cached
records. Movies contain just enough information to recre-
ate input/output listings, so they can be checked-in into
source control, making it easy to assess whether updating
a library or Coq itself meaningfully affects a document
(it is otherwise easy to miss breakage or subtle changes
in copy-pasted or automatically recorded output). JSON
records of movies can also be used as a convenient format
to interoperate with third-party libraries.

Using custom markup: coqdoc → webpage Alectryon pri-
marily focuses on reST support, but it can also be used with
other markup languages. For example, we can compile un-
modified Coqdoc documents by using Coqdoc instead of
Docutils to compile the prose found in literate comments,
while continuing to use Alectryon to render code and proofs
(more details are given in section 4):
(** * Function types
Implications ([P → Q]) are
universal quantifications ([∀ x, Q]): *)
Set Printing All. (* .none *)
Check (False → True). (* .unfold *)

Function types
Implications (P → Q) are universal quantifications (∀ x, Q):

Check (False → True).

forall _ : False, True
 : Prop

3 Implementation
Alectryon is implemented in Python:
• A core module takes a list of code snippets, feeds them to

Coq, and records goals and messages (626 lines of code).
• A transforms module implements document transforma-

tions used by the various compilation pipelines (377 LoCs).
• An html module formats recorded goals and messages as

HTML, which, paired with appropriate CSS (and, option-
ally, JavaScript), can be explored interactively (202 LoCs).

• A literate module implements translations from Coq to
reST and from reST to Coq (554 LoCs).

• A docutils module plugs Alectryon into reST, making it
easy to embed Coq snippets in reST documents. A sphinx
module wraps this functionality for use with the Sphinx
documentation system (593 LoCs).

• A json module serializes recorded output (166 LoCs).
• A cli module ties these tools together (626 LoCs).

159

https://alectryon-paper.github.io/snippets/functions.coqdoc.html

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

This section dives into the details of the implementation
of each of these components (the last two are simple enough
that we do not discuss them further). Readers interested in
the high-level takeaways can skip to the following sections,
which evaluate Alectryon and discuss our design decisions
in relation to previous work.

3.1 The Core
The core of Alectryon is built on top of a new IDE protocol
for Coq called SerAPI [19]. It exposes a minimal interface: a
constructor to start an instance of SerAPI and a method to
process a fragment of Coq code, returning a list of sentences
paired with the corresponding outputs.

Coq’s extensible notation system lets users define read-
able domain-specific languages with complex grammars,
but it also makes it much harder to reliably segment a Coq
document into sentences without invoking Coq. It would
be relatively easy to parse comments, strings, standard Coq
sentence terminators like . and ..., bullets -+*, and braces
{} (though see the discussion in subsection 5.1), but Coq
does not forbid defining custom notations including peri-
ods. Properly handling that case essentially requires run-
ning Coq’s parser; the following confuses most Coq IDEs,
but not the compiler, nor Alectryon:
Notation "(a . b)" �= (a, b).
Check (1 . 2).

(1 . 2)
 : nat * nat

Alectryon handles it correctly by mixing the segmenta-
tion and execution phases and letting Coq handle both. Out-
puts are computed by feeding the fragments to Coq one by
one, processing them, recording sentence boundaries and
raw goals and messages, and querying Coq for a pretty-
printed representation of the hypotheses and conclusion of
each goal. Letting Coq split sentences for us means that sen-
tences and comments cannot span fragment boundaries, but
we have not found this to be an issue in practice.

3.2 Document Transforms
Recording Coq’s output produces a list of sentences paired
with their outputs. Depending on the application, Alectryon
applies certain transforms to each input-output pair before
formatting the result.
1. Attach comments to preceding code. A common pattern in

Coq code (popularized by Software Foundations [36]) is to
add short comments to help readers orient themselves in
the proof — this style is useful even when running in a
full-featured IDE, since it gives a brief summary of what
the reader is looking at:
induction n.
- (� n ← 0 �) ….
- (� n ← S _ �) ….

The default segmentation algorithm parses the text fol-
lowing the call to induction as a sentence including the
first -␣ bullet followed by a comment (* n = 0 *). With-
out post-processing, Alectryon would turn only -␣ into
an interactive element, making it hard to click or hover.
This first transformation merges comments into preced-
ing code sentences, as long as they are on the same line.
It can optionally be restricted to bullets.

2. Group hypotheses by type. This is done to save space and
line up with Coq’s default rendering strategy: consecu-
tive hypotheses of the same type are coalesced into a sin-
gle hypothesis with two names.

3. Process I/O annotations (.in, .out, etc.). Annotation com-
ments are stripped from input sentences and accumu-
lated to determine what should appear in the output, and
what should be shown by default. The default is that all
output is included and hidden (folded). As this step comes
after running Coq, all that can be done is to hide part of
the proof script, not prevent it from being executed (this
guarantees that running the script in a regular Coq IDE
will produce the same results).

4. Highlight failing commands. This phase post-processes
sentences annotated with .fails. We strip the Fail prefix
from the input, remove the failure header added by Coq
to the output, and indicate the failure with a red under-
line (top: plain; bottom: stripped):

Fail Check (tt 1).

Check (tt 1).

The command has indeed failed with message:
Illegal application (Non-functional construction):
The expression "tt" of type "unit"
cannot be applied to the term
 "1" : "nat"

Illegal application (Non-functional construction):
The expression "tt" of type "unit"
cannot be applied to the term
 "1" : "nat"

We discuss the reasoning behind requiring all sentences
to succeed in section 5.

5. Group white space with preceding code. This is used only
by the HTML backend, and it matters when a block of
output is unfolded. Briefly: when displaying goals or mes-
sages, we want to hide blanks that follow the correspond-
ing input, up to and including the first subsequent new-
line, since the output is already presented as a block.

6. Apply custom filters. This enables fine grained-control on
the output, like mixing Coq syntax with graphics, us-
ing LATEX math, embedding DSLs with custom syntax
highlighting, displaying contextual diffs between proof
steps, etc. (examples are given in Appendix A). Simple fil-
ters typically use custom Coq notations to identify parts
of the proof that require custom processing and some
JavaScript code for rendering; more complex filters can

160

https://alectryon-paper.github.io/snippets/notations.html
https://alectryon-paper.github.io/snippets/fails.html

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

embed arbitrary Python objects into the recorded output
and hook into the HTML backend directly to customize
the way these objects are rendered.
Alectryon’s core and (to a lesser extent) the transforms and

literate modules are the only parts of it that are strongly
tied to Coq: to implement support for other proof languages,
it would be enough to reimplement the core on top of alter-
native communication protocols like the IDE frontends of
F* [38], Lean [12], or Idris [6], add any relevant language-
specific transforms, and adjust the comment delimiters used
in the tangling and untangling code. If a standardized proto-
col emerges to communicate with proof assistants, possibly
as an extension of the popular Language Server Protocol
[16], porting Alectryon will only be a matter of rewriting
the core module and developing appropriate transforms.

3.3 HTML Rendering
Translating input/output pairs into HTML trees is straight-
forward, except for two points:
Most interactivity is achieved using CSS, not JavaScript.

In particular, hovering is detected using CSS, and individ-
ual output elements are toggled using hidden checkboxes:
Alectryon creates one checkbox per input sentence and uses
<label>s to make it so that clicking on an input sentence tog-
gles the corresponding checkbox. Then, CSS rules are used
to selectively display or hide the output. This technique is
usually called the “checkbox hack” [10].

There are multiple advantages to using this “hack”: users
do not need to run JavaScript code (in particular, the web-
pages work fine with all scripts disabled), and browsers au-
tomatically keep track of which outputs were toggled by the
user, so reloading an Alectryon webpage does not reset the
page’s state. Browser support is good: this approach works
fine with browsers as old as IE 11 (released in 2013).

A minimal amount of JavaScript (dozens of lines) can be
used to further enhance the experience, allowing users to
focus on a specific sentence and to replicate the IDE experi-
ence of stepping through a document using the keyboard.
The structure of the HTML documents that Alectryon gen-

erates is carefully tuned to ensure that Alectryon’s output re-
mains readable when CSS and JavaScript are disabled, as is
common when viewing HTML documents in news aggrega-
tors (RSS and Atom feed readers; Figure 10). Minimal inline
CSS provides visual improvements where supported.

3.4 Tangling and Untangling
In its simplest form, tangling and untangling is relatively
easy to implement: from reST to Coq, locate ၼၽ coqၭၮ direc-
tives and wrap all other text in (*| … |*) comments. From
Coq to reST, simply remove the (*| … |*) markers. There
are multiple problems with this approach, so the following
goes over themain issues: identifying literate comments, ad-
justing indentation, and trimming redundant markup.

Parsing Coq code Not all “(*” tokens in a Coq document
are comment delimiters: for example, the command Check
"string (* … *)" does not contain a comment, since the de-
limiters are contained in a Coq string. Thus, to untangle
(convert from Coq to reST) Alectryon starts by using a sim-
ple recursive-descent parser to segment documents into se-
quences of code and comment spans (Coq does not let users
redefine comment markers, so we do not need to invoke
the compiler to parse comments). Separately, when tangling
(translating from reST to Coq), we escape “(*” and “*)” to-
kens in prose to avoid opening a nested comment or pre-
maturely closing the surrounding literate comment (these
tokens are not rare, since “*” is used to indicate emphasis in
reST, (*like this*).

Adjusting indentation Indentation is semantically mean-
ingful in reST, so Alectryon needs to preserve enough in-
formation when tangling to reconstruct it when untangling.
We could simply preserve all indentation, of course, but it
would yield poor usability: users would have to carefully
preserve indentation carrying no direct connection to the
structure of their Coq code. Instead, when toggling between
woven reST documents and tangled Coq ones, Alectryon
unindents the Coq code by the amount of the preceding ၼၽ
coqၭၮ directive; when untangling, the process is reversed and
code is indented back under the preceding ၼၽ coqၭၮ directive
(top: reST view; bottom: Coq view). With this process, it is
safe to automatically reindent tangled Coq using any pre-
ferred indentation style — the only constraint is to respect
reST conventions inside (*| … |*).
ၼၽ noteၭၮ

Most commands accept ``Local`` and ``Global``:
ၼၽ coqၭၮ

Global Open Scope list_scope.

(*|
ၼၽ noteၭၮ

Most commands accept ``Local`` and ``Global``:
ၼၽ coqၭၮ

|*)
Global Open Scope list_scope.

Minimizing redundant markup The tangling and untan-
gling functions should be bijective (modulo whitespace and
redundant markup), and their composition should be idem-
potent (the first round of coq → rst → coq or rst → coq →
rst conversions may normalize spacing and markup, but
subsequent roundtrips should not make further changes).
To improve readability, the tangling process (reST to Coq)
removes all ၼၽ coqၭၮ markers that can be unambiguously re-
constructed — that is, all markers that do not have custom
flags and whose indentation (nesting) level matches the im-
mediately preceding line. Here is a concrete example (top:
reST view; bottom: Coq view):

161

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

``Let`` introduces a local definition:
ၼၽ coqၭၮ

Section A. Let a ဲ= 1. End A.
ၼၽ coqၭၮ unfold fails

Fail Check a.
ၼၽ noteၭၮ

Outside sections, ``Let`` will print a warning.
ၼၽ coqၭၮ

Let a' ဲ= 1.

(*|
``Let`` introduces a local definition:
|*)
Section A. Let a ဲ= 1. End A.
(*|
ၼၽ coqၭၮ unfold fails
|*)
Fail Check a.
(*|
ၼၽ noteၭၮ

Outside sections, ``Let`` will print a warning.
ၼၽ coqၭၮ
|*)
Let a' ဲ= 1.

In the reST view (top), each Coq fragment is prefixedwith
a ၼၽ coqၭၮ header. In the tangled Coq view (bottom), how-
ever, Alectryon removes the first ၼၽ coqၭၮ marker, since it
can be inferred. The other two are kept: the first one be-
cause it has arguments (unfold fails); the second because it
specifies a different nesting (indentation) level than the im-
mediately preceding text (if removed, the second Let would
be nested inside the note when untangling back to reST).

3.5 Docutils Integration
The standard reST compilation toolchain, Docutils, has ex-
tensive support for language extensions, including custom
roles (inline markup), directives (block markup), AST nodes,
and AST transforms. Alectryon plugs into it using a cus-
tom ၼၽ coqၭၮ directive that records its contents into a custom
“pending” node. Once the document is fully parsed, a custom
AST transform uses Alectryon’s APIs to process the content
of each pending node, replacing themwith formattedHTML
nodes. The implementation of the directive is slightly more
complicated than typical Docutils directives: by default, Do-
cutils strips the indentation of a directive’s body, whereas
we want to ensure consistent indentation between consecu-
tive Coq blocks. This is visible in the following example, in
which Docutils would, if ၼၽ coqၭၮ were a regular directive,
line up the Goal True and exact I statements as if they had
the same indentation.
ၼၽ coqၭၮ

Goal True.
ၼၽ coqၭၮ

exact I.

A few additional roles allow users to write inline code
(not executed) and to link to external definitions (so that
:coqid:`Coq.Arith.PeanoNat#Nat.Even` produces a link to the
definition of Nat.Even in the Coqdoc rendering of Coq’s stan-
dard library).

Combining Alectryon’s Docutils extensions with the un-
tangling support provided by the literate module would be
enough to compile literate Coq documents, but the experi-
ence would be miserable: since tangling and untangling can
change line numbers, reST mistakes would be reported at
positions relative to the untangled reST document, not the
original Coq source file. Instead, Alectryon implements a
custom Docutils parser frontend, which produces a Docu-
tils AST by untangling Coq sources while preserving origi-
nal line and column numbers, allowing for precise error re-
ports.

4 Evaluation
Alectryon has been in development for a bit over a year,
but had not been publicly released until now, and thus has
not yet seen widespread use. To evaluate it, we plugged
it into a reST-based blog engine for our lab’s blog (https:
//plv.csail.mit.edu/blog/), integrated it into the Coq refer-
ence manual in replacement of the existing coqrst mod-
ule, and used it to recompile a popular book in its entirety
(Logical Foundations [36]), to compile chapters manually
translated to reST from two other books (Certified Program-
ming with Dependent Types — CPDT [7] and Functional
Reasoning About Programs — FRAP [8]), and to generate
webpages for Coq’s standard library and for a popular
library, Flocq [4] .

Compilation times Compiling literate programswithAlec-
tryon generates significant but reasonable overheads over
regular compilation. Figure 1 shows compilation times for a
randomly selected subset of Coq’s standard library.

0 2 4 6
Compilation time (seconds, 95% CI)

Arith/Le
FSets/FSetDecide
…/FSetProperties
…/ClassicalChoice
Numbers/DecimalNat

…/NatInt/NZMul
Program/Tactics
ZArith/Zgcd_alt

coqc
alectryon

Figure 1. Compilation times with coqc and Alectryon for a
subset of Coq’s standard library (Intel Core i7-4810MQ CPU
@ 2.80GHz, single-threaded). Error bars indicate 95% confi-
dence intervals (95% CI).

162

https://coq.inria.fr/library/Coq.Arith.PeanoNat.html#Nat.Even
https://coq.inria.fr/library/Coq.Arith.PeanoNat.html#Nat.Even
https://plv.csail.mit.edu/blog/
https://plv.csail.mit.edu/blog/
https://alectryon-paper.github.io/bench/refman/
https://alectryon-paper.github.io/bench/lf/index.html
https://alectryon-paper.github.io/bench/books/proof-by-reflection.html
https://alectryon-paper.github.io/bench/books/interpreters.html
https://alectryon-paper.github.io/bench/stdlib/theories/
https://alectryon-paper.github.io/bench/flocq-3.3.1/src/

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

Over a larger test set (Coq’s standard library), Alectryon’s
per-file overheads vary between 1.2× and 110× (median: 3×;
90th percentile: 6.9×; 95th: 11.6×), and the overall slowdown
is about 5.5×; Figure 2 shows their distribution. Compiling
LF takes seconds. In practice, these overheads do not mat-
ter much: they are incurred only once before Alectryon’s
caching kicks in.

1 2 3 4 5 6 7 8 9 10 11
Slowdown factor (alectryon-coqdoc / coqc)

0%

50%

100%

Fi
le
s
(c
um
ul
at
iv
e)

Figure 2. Cumulative distribution of slowdowns (ratios of
execution time) incurred by compiling Coq’s standard li-
brary (482 files).

Interestingly, there is little correlation between coqc and
Alectryon’s running times: for files with few goals or sim-
ple goals Alectryon’s speed is comparable to that of coqc,
while for files with numerous or complex goals Alectryon
is much slower. To better understand how Alectryon’s over-
heads break down, Figure 3 offers a detailed look at increas-
ingly complex pipelines on three examples with median and
extreme overheads, and confirms our intuition: Byte.v is a
short file with small goals but long-running, highly auto-
mated tactics (145 sentences): Alectryon’s overhead is mini-
mal, because there’s not too much data to retrieve from Coq
and to format (Alectryon sends and receives about 1MB).
Ranalysis3.v, on the other hand, manipulates large proof
states (a typical state in that file has 8 goals, each with 40 hy-
potheses) in rather explicit style (569 sentences), which gen-
erates upwards of 165MBworth of communication between
Alectryon and SerAPI (unlike Coqtop, Alectryon records
and formats the hypotheses of all goals at each step, not
just the top one).

Porting existing documents A wealth of Coq documents
have already been written using Coqdoc’s syntax. For full
compatibility, one could write a Docutils frontend for that
syntax, but for simplicitywe implemented aCoqdoc-specific
compilation pipeline instead. We start with a document con-
taining Coqdoc comments, segment it using the first stage
of the untangling code, gather all Coqdoc comments into
a new document, compile that document to HTML using
the coqdoc binary (compiling all prose at once allows us to
invoke coqdoc just once), segment the resulting HTML and
finally interleave it with the HTML generated by Alectryon

0 2 4 6 8

Strings/Byte

0.0 0.5 1.0 1.5 2.0

Lists/ListSet

0 20 40 60 80 100
Compilation time (seconds, 95% CI)

Reals/Ranalysis3

coqtop
coqc
sertop
alectryon-api

alectryon-json
alectryon-html
alectryon-coqdoc

Figure 3. Compilation times for various pipelines. coqtop
and coqc are the usual Coq compilers. sertop is SerAPI’s
REPL, running on pre-recorded inputs generated by Alec-
tryon (as an example, these inputs total about 90MB worth
of SerAPI commands in the case of Ranalysis3.v); it mea-
sures the cost of running Coq and pretty-printing goals and
hypotheses, plus parsing and unparsing overheads in Ser-
API. alectryon-api stops before producing any output; it adds
the overhead of parsing and unparsing on Alectryon’s side.
alectryon-json serializes results to JSON. alectryon-html gen-
erates plain webpages. alectryon-coqdoc generates webpages
in Coqdoc compatibility mode.

for each source code fragment. This approach is fairly ro-
bust: it works reliably for Software Foundations, one of most
widely used Coq textbooks.

As another experiment, we manually ported a chapter
of CPDT from Coqdoc to literate Coq with reST comments.
This book relies more heavily than Logical Foundations on
displaying goals, messages, and errors, so it required more
significant adjustments to take advantage of Alectryon’s fa-
cilities (in Logical Foundations it was enough to add a few
display annotations and remove a few copy-pasted outputs).
A reasonable strategy is to change Coqdoc comments ((**
… **)) into Alectryon ones ((*| … |*)), untangle the docu-
ment into reST, and make appropriate syntax edits before
tangling back. Porting to Alectryon required a few min-
utes per section (a few pages), corresponding roughly to the
speed of a careful read-through.

Finally, we recompiled Coq’s reference manual, using
Alectryon as a replacement for coqrst (the tool currently

163

https://alectryon-paper.github.io/bench/lf/index.html
https://alectryon-paper.github.io/bench/books/proof-by-reflection.html

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

used by Coq’s reference manual) and tweaking its configu-
ration to match coqrst’s behavior. The process was smooth:
the only change that we had to perform was prefixing fail-
ing sentences with an explicit Fail annotation, since Alec-
tryon rejects erroneous code (the reference manual uses
such code to demonstrate errors; adding Fail and a .fails
flag reproduces the pre-existing behavior). For simplicity,
we left the reset and abort flags currently used in the manual
unchanged, but a complete port would likelywant to change
these to explicit Reset and Abort commands, to ensure that
tangling produces a file whose behavior fully matches that
of the reST sources.

5 Related Work and Discussion
This section reviews related work and discusses parts of
Alectryon’s design. The most closely related tools are Co-
qdoc, a documentation language for Coq distributed as part
of Coq’s standard distribution, Proviola [46] a “tool for proof
reanimation”, and CoqTeX, a Coq interpreter designed to an-
notate Coq inputs with the corresponding outputs in LaTeX
files.
Coqdoc is the de facto standard for documenting proof

scripts in the Coq community. As a literate programming
language, authors have used it in a number of popular books
[7, 36]. As a documentation language, it is commonly used
to attach docstrings to bits of Coq code. Its main limitations
are that it uses a custom markup language for its prose and
that it does not support embedding Coq’s output into the
webpages and LaTeX files that it generates.

Coqdoc’s use of a custom markup language is limiting:
Coqdoc documents often include raw LaTeX or HTML code
to work around these limitations, and little support exists
for editing Coqdoc prose. In contrast, Alectryon’s reliance
on reST and its ability to untangle Coq files into reST doc-
uments means that literate Coq files inherit all the features
of reST, and that authors can switch to a specialized reST
editor to write their prose.

Still, Coqdoc has the edge over Alectryon in a few cases,
especially when it comes to hyperlinking: Coqdoc under-
stands Coq’s glob files, which enables it to hyperlink uses
of identifiers and notations to their definition — we plan to
use corresponding features in Alectryon once the SerAPI in-
terface exposes sufficient information.
Proviola [46] implements a subset of Alectryon’s output-

recording features: it lets authors record movies (XML files
capturing input and output from a proof assistant) bymeans
of a camera (recording software) and replay them using a
proviola (such as an interactive webpage). In Proviola terms,
Alectryon’s core is a camera built on top of modern Coq
APIs; the movies it generates are semantically richer (Provi-
ola records Coq’s output as pre-formatted plain text); and
its interactive webpages are proviolae offering multiple in-
teraction modes, one of which matches the traditional IDE

display used by the original Proviola system. Unlike Provi-
ola, Alectryon can be used to interleave Coq’s output in
proofs that are part of literate documents (Proviola can only
be used to emulate the UI of a Coq IDE). Proviola has seen lit-
tle development since 2013, but its reliance on coqtop, Coq’s
REPL interface, has granted it surprising longevity (Provi-
ola was originally released in 2010). It is now part of the
coq-community repository.
CoqTeXwas long used to display input/output examples

in Coq’s reference manual — it was used until the manual
was migrated to reST and Sphinx, at which point the man-
ual switched to coqrst, a newly developed Docutils plugin
that uses coqtop to execute Coq sentences and incorporate
Coq’s responses into generated documents [37]. Part of the
motivation to develop Alectryon were repeated requests on
public discussion forums to make coqrst into a standalone
tool usable independently of Coq’s reference manual.

Alectryon’s core is a clean-slate reimplementation of the
REPL part of coqrst based on a richer API. Its HTML back-
end differs from coqrst and CoqTex in that both of these
tools produced fully static webpages, while Alectryon lets
readers browse goals interactively. CoqTeX and coqrst do
not support tangling a LaTeX or reST document into a Coq
source file; as a result, readers need to manually copy ex-
amples from the reference manual into a fresh Coq file to
be able to explore them in a proof assistant (in contrast,
Alectryon supports tangling reST files into executable Coq
sources).

Alectryon’s ၼၽ coqၭၮ directive is essentially the same as
the ၼၽ coqtopၭၮ directive used in coqrst, though we add sup-
port for annotations on individual lines (coqrst only sup-
ports I/O configuration for complete directives), and we en-
force that all Coq code included in those directives should
be valid and error-free. We argue that this last point is a
significant improvement. Indeed, coqrst’s original design
simply resumed execution at the next sentence every time
it encountered an error: this was convenient for showcas-
ing error messages, but it allowed breakage introduced by
Coq upgrades to go undetected. To protect against this, a
new Coq setting was introduced to force coqtop to exit af-
ter encountering an error, and the ၼၽ coqၭၮ directive was
taught to temporarily disable that setting for blocks marked
to allow failing sentences. This design is a significant im-
provement over the original coqrst, but it does not guaran-
tee that the right sentence, or really any sentence, is fail-
ing, leaving potential errors undetected. In contrast, Alec-
tryon’s single-sentence annotations offer a more robust de-
sign: users must prefix failing sentences with an explicit
Fail command, which suppresses the failure (from Coq’s
perspective, the line succeeds); an explicit .fails annota-
tion can then be used to strip Coq’s error header, producing
the same output as coqrst (one weakness of this scheme is
that Coq currently does not print error locations for com-
mands prefixed with Fail). Single-sentence annotations can

164

https://alectryon-paper.github.io/bench/refman/

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

likewise be used to implement the restart, reset, and abort
flags currently supported by coqrst: instead of letting coqrst
insert Restart, Reset Initial, or Abort All commands, we can
include them in the actual source listing and hide themwith
a .none annotation, which guarantees that the tangled file
will execute correctly. Two more differences enhance the
robustness of the Alectryon-based build of the manual: un-
like coqrst, Alectryon leaves sentence segmentation to Coq
itself; and Alectryon can record and save proof movies, mak-
ing it easy to spot regressions when rebuilding the manual
for a new Coq release.

5.1 Discussion
Parsing Coq comments Block comments in Coq are rel-
atively complicated: parsers need to track not just nested
comments but also nested strings, an oddity Coq inherited
from OCaml (string delimiters in comments must be prop-
erly matched, and comment markers within them are ig-
nored).This designwas intended tomake commentingmore
robust, so that wrapping a valid bit of code in (* … *) would
always produce a comment spanning the whole wrapped
fragment. As an example, the following is valid OCaml code:
let a = "x *) y" in
(* let a = "x *) y" in *) a

Unfortunately, most tools handle this snippet incorrectly
(in particular, Pygments, a popular syntax-highlighting li-
brary commonly used with Docutils, which we use for syn-
tax highlighting in this paper, gets it wrong). So does Emacs’
tuareg-mode.

Arguably, the reasoning behind this design does not apply
in Coq: unlike in OCaml, a lone “*)” token is not rejected
in Coq, and in fact it is relatively common in proof scripts,
as in split; (reflexivity || rewrite H in *), for example. As
a result, paired (* … *) delimiters already cannot be used
reliably to comment out a block of code.

The development of a system similar to Alectryon, fslit,
designed for use with the F* programming language, was
significantly simplified by F*’s single-line comments: com-
menting is more reliable, literate blocks (prefixed with ///
markers) are less invasive than (*| … |*)markers, and com-
ment delimiters inside prose do not need to be escaped. Pro-
posals have been made to enhance Coq (and, in fact, OCaml)
with single-line comments, but none has gathered signifi-
cant support yet.

Docstrings and literate comments Alectryon has no sup-
port for attaching documentation to specific bits of code,
like definitions, axioms, variables, etc. We claim that this is
a different job (“docstrings”), ideally to be handled by Coq it-
self (similar to how Coq tracks the body and location of def-
initions). These docstrings could then be referred to using
custom reST directives, likely as part of a new extension of
the Coq semantic domain for Sphinx used by the reference
manual. In the long run, such extensions could be combined

with a proper cross-referencing system to allow authors to
present code fragments and proofs in arbitrary order: one
would use custom directives to pull definitions and anno-
tated proofs from Coq developments into reST documents
(such a tool would leverage Alectryon’s recording and inter-
active presentation features, but it would be orthogonal to
its literate programming support: to allow straightforward
bidirectional translation between reST and Coq views, Alec-
tryon’s literate programming tools do not allow authors to
reorder code fragments).

Choosing a markup language Alectryon heavily favors
reST — the choice was made for the same reasons as for
Coq’s manual: the language and its tooling (Docutils) are
extensible, battle-tested, and relied upon by many other
projects (Python, Haskell, Agda, etc.). On the other hand, its
syntax leaves much to be desired: most importantly, its in-
line markup is fragile and cannot nest. This paper is written
in reST and compiled using the standard Docutils toolchain.

In principle, Docutils can compile any markup language,
as long as an appropriate frontend is written for it. In prac-
tice, the default distribution only includes support for reST,
but third-party frontends exists, like recommonmark [52] for a
dialect of Markdown (it offers limited support for custom di-
rectives, piggybacking on the syntax for fenced code blocks).
We have not designed a translator to tangle and untangle
to and from recommonmark’s dialect of Markdown, though it
would be relatively simple to do so.

5.2 Other Related Work
Variants of CoqTeX and Coqdoc The limitations of exist-
ing tools have prompted the development of a host of other
programs for documenting Coq scripts, most of them vari-
ants of coqdoc or CoqTeX. coq-lit [59] was built by Jay
Wilcox for his blog; it builds upon Coqdoc to format goals
copy-pasted into comments as floating tooltips. Mathemat-
ical Components [47] and the Coq’Art [3] each use custom
systems similar to CoqTeX; both record Coq’s output within
the original TeX document (CoqTeX generates a new copy
of the document instead) and both can be used to refresh
or check the output (interestingly, both checkers are robust
to manual changes like tweaking the indentation or remov-
ing parts of the output). Like CoqTeX, coq-psv [18] automat-
ically records Coq’s output, but it displays the input and the
output side-by-side, in two-column format, and attempts to
minimize the size of the output by omitting redundant parts.

In-browser IDEs and notebooks Coqdoc’s default output
is fully static and omits Coq’s output, but it can be enhanced
with jsCoq [20] to run a copy of Coq in the user’s browser,
enabling interactive exploration. Related efforts include sim-
ilar software for Lean [12], HTML visualizations of Mizar
proofs based on its XML movie format [54, 55], a new Coq
kernel [33] for Jupyter (Jupyter is a browser-based notebook

165

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

application [27]), as well as PeaCoq [39] and the more ven-
erable ProofWeb [26], the last two of which support more
advanced proof visualizations. We expect that it would be
straightforward to plug jsCoq into webpages generated by
Alectryon (and that it would complement its pre-recorded
outputs nicely), but part of the appeal of Alectryon’s pre-
computed webpages is that they minimize the requirements
placed on readers: running Coq scripts can require signif-
icant amounts of computational resources, especially in a
web browser, while Alectryon’s pre-recorded outputs are in-
stantly available and relatively lightweight.

Structured editors and projectional editing Alectryon’s
bi-directional translation between Coq and reST is a simple
form of projectional editing, a style in which programs are
written as abstract objects edited by projecting them into
various representations [17, 44] (for example, a fluid dynam-
ics simulation package might include mathematical formu-
lae edited using a graphical equations editor, models edited
in a 3D modeling program, a graphical user interface edited
using a UI-building toolkit, and a grammar for its configu-
ration files projected into railroad diagrams editable using
a structured graphical editor). In projectional editors, the
storage format of the program is usually distinct from its
projections; in Alectryon, Coq and reST projections are di-
rectly converted into one-another instead and no separate
storage format is ever materialized.

Literate programming Literate programming systems are
too numerous to enumerate here, though interested readers
should consult Knuth’s seminal work on the topic [29, 30],
as well as reviews from its early days [45].

Interactive theorem provers present a special challenge
for literate programming, however, because proof scripts
are typically written with the help of a specialized environ-
ment (at the very least a REPL). This constraint means that
proof-assistant languages do not usually lend themselves
to the usual literate-programming style: without additional
tooling, mixing prose and code in a non-executable docu-
ment format and then deriving executable code by tangling
the original sources precludes interactive code edition.

Still, themost robust solution in that style for Coq is likely
the Coq Babel extension of Org mode, an “Emacs plain-text
system” [41]. The experience is similar to using CoqTeX or
coqrst, but all of Coq’s output is placed together at the end
of each code block instead of being interleaved with the cor-
responding inputs. Extensions can be used to refer to a frag-
ment of Coq code in an external file [40]. Org mode sup-
ports tangling, can preserve the original prose in comments
inside tangled files, and even supports a form of untangling,
using special “link” comments to connect sections of the tan-
gled code to the source blocks they originated from. Unfor-
tunately, unlike in Alectryon, the tangling and detangling
process are lossy: tangling does not preserve the full struc-
ture of the prose, and detangling only mirror modifications

made to the code, not to the prose included in comments.
Of course, to preserve interactivity while sticking with the
usual literate programming paradigm, we could enhance
Coq’s compiler and all existing Coq UIs to teach them to ig-
nore the prose parts of a reST, Org, or LaTeX document and
compile only the code contained within it.This is essentially
the approach taken by Literate Haskell and Literate Agda:
both compilers include preprocessors which tangle Literate
programs into regular code prior to compiling them, and
IDEs are extended to recognize the special format of literate
Haskell and Agda files . Unfortunately, this comes at sig-
nificant costs in complexity: enhancing Proof General (an
Emacs mode for Coq programming [1]) to ignore reST prose
would be a non-trivial endeavor, for example. Instead, Alec-
tryon’s support for bidirectional translation between Coq
and reST allows authors to benefit from the full flexibility
and convenience of specialized reST and Coq IDEs, with no
additional implementation effort in the compiler or the UIs.

Visualizations and example-centric programming The
early applicative language Poplar [35] (1980) encouraged au-
thors to annotate source code with automatically checked
comments recording of the result of running each subex-
pression of a program on a well-chosen example to help
readers grasp the meaning of the program.These ideas have
persisted in many languages and environments, and led to
advanced execution and proof visualizations [11, 15, 51] as
well as UIs able to automatically generate and display these
annotations, in a style called example-centric programming
[14]. Alectryon’s way of showing goals and messages inline
with corresponding proof scripts inherits from this tradition,
though without difficulty of picking representative inputs
since each proof script runs on a specific proof.

Calculational, structured, and declarative proofs The
tactic-based proof style pioneered by LCF [23] is sometimes
called imperative or procedural, in contrast to the declara-
tive style introduced by Mizar [53] and later implemented
in proof assistants like HOL88 [25], Isabelle/Isar [57], TLA+
[31], HOL Light [58], and even in program verifiers like
Dafny [32].

Declarative proofs tend to more closely mirror pen-and-
paper proofs, and are generally more readable in isolation
than plain imperative proof scripts. They derive from struc-
tured calculational proofs [2, 13, 24, 56], in which calcula-
tions (sequences of propositions chained by logical connec-
tors, each annotated with a succinct justification of the cor-
responding step, as in𝐴 = {because 𝑋 }𝐵 ⇒ {because 𝑌 }𝐶)
are structured through logical cuts and typographicalmeans
such as indentation and explicit nesting marks.

A declarative proof language was added to Coq in version
8.1 [9] (2006), but it saw only limited use and was removed
in version 8.7 (2017). Coq 8.4 instead introduced structure
to imperative proof scripts using bullets and braces, giving
scripts most of the structured part of structured calculational

166

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

proofs. While it is possible to emulate the calculational part
in imperative proofs using tactics to re-state the current
goal and hypotheses after each step in a chain of rewrites,
this “checked comments” style is not particularly common
in Coq (rich tooling existed in Isabelle to support this style
of proofs before the introduction of Isar and the switch to
declarative style [43]). Alectryon’s automatic annotations,
combined with careful structuring of proof scripts and judi-
cious use of logical cuts (assert … by … or SSReflect’s have),
offer the readability benefits of declarative proofs without
the burden of adding output annotations.

6 Conclusion
Authors hoping to discuss proofs and programming tech-
niques are stuck between prose-first formats that make it
hard for users to explore the code and code-first formats
that require authors tomanually annotate proof scripts with
copy-pasted snapshots of the prover’s output and write
whole books out of source code comments. It does not have
to be that way.

Alectryon embodies a new approach to the development
and dissemination of literate proof scripts, which we hope
will enable authors to share interesting proofs and produce
textbooks, tutorials, blogs, and discussions more smoothly.
Through examples, discussions, and benchmarks, we have
shown that Alectryon offers robust and flexible tools to pro-
duce automatically annotated proof scripts, in the form of in-
teractive webpages; that its output format offers a stable and
self-contained archival medium for mechanized proofs; that
it integrates seamlessly into existing documentation sys-
tems; that it scales to large documents, like Coq’s reference
manual; and that its support for bidirectional tangling and
untangling enables authors to offer an excellent experience
to their readers without compromising on their own prose-
writing experience. Lastly, we have provided a detailed de-
scription of the system, and demonstrated its flexibility and
extensibility by enhancing it with a Coqdoc-compatibility
mode.

Alectryon is distributed under a permissive (MIT/Expat)
license at https://github.com/cpitclaudel/alectryon/. The ar-
tifact accompanying this paper is available at https://zenodo.
org/record/4033626.

Acknowledgments
Many thanks to the reviewers for their insightful comments
and suggestions, and to the many readers who provided
valuable feedback on this paper, including (in alphabeti-
cal order) Thomas Bourgeat, Arthur Charguéraud, Paolo
Giarrusso, Jasper Haag, Olivier Hercend, Shachar Itzhaky,
Benoît Pit-Claudel, Valentin Robert, Reyu Sakakibara, Alan
Schmitt, Anton Trunov, and Théo Zimmerman.

A Advanced Rendering

Definition blinker �= [[0;0;0;0;0];
 [0;0;0;0;0];
 [0;1;1;1;0];
 [0;0;0;0;0];
 [0;0;0;0;0]].
Compute take 3 (iter conway_life blinker).

Definition bipole �= [[1;1;0;0;0];
 [1;0;0;0;0];
 [0;1;0;1;0];
 [0;0;0;0;1];
 [0;0;0;1;1]].
Compute take 3 (iter conway_life bipole).

Definition glider �= [[0;1;0;0;0];
 [0;0;1;0;0];
 [1;1;1;0;0];
 [0;0;0;0;0];
 [0;0;0;0;0]].
Compute take 9 (iter conway_life glider).

= [; ;]

: list (list (list bool))

= [; ;]

: list (list (list bool))

= [

; ; ;

; ; ;

; ;

]: list (list (list bool))

Figure 4. Images. Alectryon recordings can be post-
processed to customize the rendering of Coq’s output. Here,
we replaced binary matrices by SVG graphics to help read-
ers visualize the evolution of various configurations of Con-
way’s Game of Life.

167

https://github.com/cpitclaudel/alectryon/
https://zenodo.org/record/4033626
https://zenodo.org/record/4033626
https://alectryon-paper.github.io/snippets/life.html

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

Module RBT �= MSets.MSetRBT.Make Nat_as_OT.
Definition build_trees (leaves: list nat) �=
 List.fold_left (fun trs n �>
 RBT.add n (hd RBT.empty trs) �� trs)
 leaves [] �� List.rev.

Compute build_trees [1;2;3;4;5;6].

Compute build_trees [2;1;4;3;6;5].

Compute build_trees [6;5;4;1;2;3].

= [
1

;
1
2

;
2

1 3
;

2
1 3

4
;

2
1 4
3 5

;

2
1 4
3 5

6
]: RBT.t �� list

= [

2
;

2
1

;
2

1 4
;

3
2

1
4

;

3
2

1
4
6

;

3
2

1
5

4 6

]: RBT.t �� list

= [
6

;
6

5
;

5
4 6

;

5
4

1
6

;

5
2

1 4
6

;

5
2

1 4
3

6

]: RBT.t �� list

Figure 5. Graphs. Introductory Coq exercises often revolve
around data-structure proofs. Here, to help hypothetical stu-
dents understand rebalancing operations on red-black trees,
we rendered three examples of incremental tree construc-
tion using the d3.js library [5].

Figure 6. Mathematics. To improve the readability of this
simple proof, we used a custom filter that translates Coq’s
output to LATEX. The resulting formulae are rendered with
MathJax, a JavaScript display engine for mathematics. The
same script without LATEX is partly shown in section 2.

168

https://alectryon-paper.github.io/snippets/rbt.html
https://alectryon-paper.github.io/snippets/nsum-gauss.html

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

Figure 7. Mathematics. Here, too, we leveraged a custom filter to improve the readability of an arithmetic proof.

169

https://alectryon-paper.github.io/snippets/Qle-pairwise.html

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

Definition udiv �= {|
 c_source �=
 "#include ""stdint.h""

 typedef struct {
 uint32_t quot; …";
 riscv_elf �=
 [x7f; x45; x4c; x46; x01; x01; x01; x00; x00; x00; x00; x00; x00; x00; x00; x00;
 x02; x00; xf3; x00; x01; x00; x00; x00; x54; x00; x01; x00; x34; x00; x00; x00;
 x0c; x02; x00; x00; x00; x00; x00; x00; x34; x00; x20; x00; x01; x00; x28; x00;
 x06; x00; x05; x00; x01; x00; x00; x00; x00; x00; x00; x00; x00; x00; x01; …] |}.

Compute udiv.(c_source).

Compute udiv.(riscv_elf).

=
#include "stdint.h"

typedef struct {
 uint32_t quot;
 uint32_t rem;
} udiv_t;

udiv_t udiv(uint32_t num, uint32_t denom) {
 uint32_t q = 0;
 while (num �� denom) {
 num -= denom; ��q;
 }
 return (udiv_t) { .rem = num, .quot = q };
}

: string

=
00010054 <udiv>�
 10054: 00 05 07 93 mv a5,a0
 10058: ff 01 01 13 addi sp,sp,-16
 1005c: 00 00 05 13 li a0,0
 10060: 00 b7 f8 63 bgeu a5,a1,10070 <udiv+0x1c>
 10064: 00 07 85 93 mv a1,a5
 10068: 01 01 01 13 addi sp,sp,16
 1006c: 00 00 80 67 ret
 10070: 40 b7 87 b3 sub a5,a5,a1
 10074: 00 15 05 13 addi a0,a0,1
 10078: fe 9f f0 6f j 10060 <udiv+0xc>

: list Byte.byte

Figure 8. Pretty-printing. In this example, we used a custom transform to improve the readability of the inputs and outputs of
a hypothetical C compiler. When invoked, the transform syntax-highlights the value of udiv.(c_source) as C code using Pyg-
ments (this part starts from a string, but it would also be reasonable to start from an abstract syntax tree). It then reconstructs
a byte stream from the value of udiv.(riscv_elf), disassembles it by running objdump -d in a subprocess, and pretty-prints the
resulting assembly listing. Running this transformation automatically at compile time guarantees that the figures remain in
sync with the Coq code.

170

https://alectryon-paper.github.io/snippets/udiv.html

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

B Editor Support for Tangling and Untangling

Figure 9. Screenshot of Emacs running Proof General and rst-mode side-by-side. On the left is the Coq view of an edited
excerpt of Software Foundations; on the right is the reST view of the same excerpt. The conversion is transparent, so editing
either view updates the same .v file on disk. Notice the highlight on both sides indicating a reST syntax error. Literate comment
markers (“(*|” and “|*)”) are rendered as solid lines.

171

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

C Plain-HTML Rendering

Lemma rev_rev {A} (l: list A) : List.rev (List.rev l) = l.
Proof.
 induction l; cbn.

A:Type

nil = nil
A:Type
a:A
l:list A
IHl:rev (rev l) = l

rev (rev l �� a �� nil) = a �� l

 - (* l ← [] *)
A:Type

nil = nil

 reflexivity.

 - (* l ← _ �� _ *)
A:Type
a:A
l:list A
IHl:rev (rev l) = l

rev (rev l �� a �� nil) = a �� l

 rewrite rev_app_distr.

rev (a �� nil) �� rev (rev l) = a �� l

 rewrite IHl.

rev (a �� nil) �� l = a �� l

 cbn.

a �� l = a �� l

 reflexivity.
Qed.

Figure 10. Plain-HTML rendering of a simple proof, with all CSS stylesheets disabled. Alectryon uses a careful selection of
standard HTML elements to ensure intelligible results in RSS feed readers without resorting to external styling.

172

Untangling Mechanized Proofs SLE ’20, November 16–17, 2020, Virtual, USA

References
[1] David Aspinall. 2000. Proof General: A Generic Tool for Proof Devel-

opment. In Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2000, Susanne Graf and Michael Schwartzbach (Eds.).
Lecture Notes in Computer Science, Vol. 1785. Springer Berlin Heidel-
berg, 38–43. https://doi.org/10.1007/3-540-46419-0_3

[2] Ralph Back, Jim Grundy, and Joakim von Wright. 1997. Structured
calculational proof. Formal Aspects of Computing 9, 5 (01 Sep 1997),
469–483. https://doi.org/10.1007/BF01211456

[3] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving
and Program Development. Springer-Verlag Berlin Heidelberg. https:
//doi.org/10.1007/978-3-662-07964-5

[4] Sylvie Boldo andGuillaumeMelquiond. 2011. Flocq: AUnified Library
for Proving Floating-Point Algorithms in Coq. In 20th IEEE Sympo-
sium on Computer Arithmetic, ARITH 2011, Tübingen, Germany, 25-27
July 2011, Elisardo Antelo, David Hough, and Paolo Ienne (Eds.). IEEE
Computer Society, 243–252. https://doi.org/10.1109/ARITH.2011.40

[5] Mike Bostock, Jason Davies, Jeffrey Heer, Vadim Ogievetsky, and
community. 2011. D3.js: Data-Driven Documents. (Feb. 2011). https:
//d3js.org/.

[6] Edwin C. Brady. 2013. Idris, a general-purpose dependently typed
programming language: Design and implementation. Journal of Func-
tional Programming 23, 5 (Sep 2013), 552–593. https://doi.org/10.
1017/S095679681300018X

[7] Adam Chlipala. 2013. Certified Programming with Dependent Types: A
Pragmatic Introduction to the Coq Proof Assistant. The MIT Press.

[8] Adam Chlipala. 2015. Formal Reasoning About Programs. Electronic
textbook. http://adam.chlipala.net/frap/.

[9] Pierre Corbineau. 2008. A Declarative Language for the Coq Proof
Assistant. In Types for Proofs and Programs, Marino Miculan, Ivan
Scagnetto, and Furio Honsell (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 69–84. https://doi.org/10.1007/978-3-540-68103-
8_5

[10] Chris Coyier. 2011. Stuff you can dowith the “CheckboxHack”. (2011).
https://css-tricks.com/the-checkbox-hack/.

[11] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, , and Man-
dayam Srivas. 1995. A Tutorial Introduction to PVS. In Workshop
on Industrial-Strength Formal Specification Techniques. Boca Raton,
Florida. http://www.csl.sri.com/papers/wift-tutorial/

[12] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. 2015. The Lean Theorem Prover (System De-
scription). In Proceedings of the 25th International Conference on Auto-
mated Deduction (CADE-25). Berlin, Germany, August 2015. Springer
International Publishing, 378–388. https://doi.org/10.1007/978-3-
319-21401-6_26

[13] EdsgerW. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and
Program Semantics. Springer New York. https://doi.org/10.1007/978-
1-4612-3228-5

[14] Jonathan Edwards. 2004. Example Centric Programming. ACM
SIGPLAN Notices 39, 12 (Dec. 2004), 84–91. https://doi.org/10.1145/
1052883.1052894

[15] Marc Eisenstadt and Mike Brayshaw. 1990. A fine-grained account of
Prolog execution for teaching and debugging. Instructional Science 19,
4 (01 Jul 1990), 407–436. https://doi.org/10.1007/BF00116447

[16] Gorkem Ercan. 2016. A common interface for building developer
tools. (June 2016). https://developers.redhat.com/blog/2016/06/27/a-
common-interface-for-building-developer-tools/.

[17] Martin Fowler. 2008. Projectional editing. (2008). https://
martinfowler.com/bliki/ProjectionalEditing.html.

[18] Mario Frank. 2020. The Coq Proof Script Visualiser (coq-psv). In 11th
Coq Workshop, colocated with IJCAR ’20.

[19] Emilio Jesús Gallego Arias. 2016. SerAPI: Machine-Friendly, Data-
Centric Serialization for COQ. (Oct. 2016). https://hal-mines-
paristech.archives-ouvertes.fr/hal-01384408.

[20] Emilio Jesús Gallego Arias, Benoît Pin, and Pierre Jouvelot. 2016. js-
Coq: Towards Hybrid Theorem Proving Interfaces. In Proceedings of
the 12th Workshop on User Interfaces for Theorem Provers, UITP 2016,
Coimbra, Portugal, 2nd July 2016 (EPTCS, Vol. 239), Serge Autexier and
Pedro Quaresma (Eds.). 15–27. https://doi.org/10.4204/EPTCS.239.2

[21] DavidGoodger. 2016. Docutils Project DocumentationOverview. (Jan.
2016). https://docutils.sourceforge.io/docs/index.html.

[22] David Goodger. 2020. reStructuredText Markup Specification. (July
2020). https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.
html.

[23] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth.
1979. Edinburgh LCF. Lecture Notes in Computer Science 78 (1979).
https://doi.org/10.1007/3-540-09724-4

[24] Jim Grundy and Thomas Långbacka. 1997. Recording HOL Proofs
in a Structured Browsable Format. In Proceedings of the 6th Inter-
national Conference on Algebraic Methodology and Software Technol-
ogy (AMAST ’97), Sydney, Australia, December 13-17, 1997. 567–571.
https://doi.org/10.1007/BFb0000500

[25] John Harrison. 1996. A mizar mode for HOL. Theorem Proving
in Higher Order Logics (1996), 203–220. https://doi.org/10.1007/
bfb0105406

[26] Maxim Hendriks, Cezary Kaliszyk, Femke Van Raamsdonk, and Freek
Wiedijk. 2010. Teaching logic using a state-of-the-art proof assistant.
Acta Didactica Napocensia 3, 2 (2010), 35–48.

[27] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila,
Safia Abdalla, Carol Willing, and Jupyter development team. 2016.
Jupyter Notebooks — A publishing format for reproducible compu-
tational workflows. In Positioning and Power in Academic Publishing:
Players, Agents and Agendas, Fernando Loizides and Birgit Scmidt
(Eds.). IOS Press, 87–90. https://eprints.soton.ac.uk/403913/

[28] D. E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (Feb 1984),
97–111. https://doi.org/10.1093/comjnl/27.2.97

[29] Donald E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (01
1984), 97–111. https://doi.org/10.1093/comjnl/27.2.97

[30] Donald E. Knuth. 1992. Literate Programming. Center for the Study
of Language and Information, USA.

[31] Leslie Lamport. 2012. How to write a 21st century proof. Journal of
Fixed Point Theory and Applications 11, 1 (Mar 2012), 43–63. https:
//doi.org/10.1007/s11784-012-0071-6

[32] K. Rustan M. Leino and Nadia Polikarpova. 2014. Verified Calcula-
tions. In Verified Software: Theories, Tools, Experiments, Ernie Cohen
and Andrey Rybalchenko (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 170–190.

[33] Eugene Loy. 2018. Jupyter kernel for Coq. (Dec. 2018). https://github.
com/EugeneLoy/coq_jupyter.

[34] Assia Mahboubi and Enrico Tassi. 2020. Mathematical Components.
Electronic textbook. https://math-comp.github.io/mcb/.

[35] James H. Morris, Eric Schmidt, and Philip Wadler. 1980. Experience
with an Applicative String Processing Language. In Proceedings of the
7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Las Vegas, Nevada) (POPL ’80). Association for Comput-
ing Machinery, New York, NY, USA, 32–46. https://doi.org/10.1145/
567446.567450

[36] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casingh-
ino, Marco Gaboardi, Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm
Sjöberg, and Brent Yorgey. 2018. Logical Foundations. Electronic
textbook. https://softwarefoundations.cis.upenn.edu/ Version 5.5.
https://softwarefoundations.cis.upenn.edu/.

[37] Clément Pit-Claudel. 2016. coqrst, An experiment in modernizing
Coq’s manual. (May 2016). https://github.com/cpitclaudel/coq-rst/.

[38] Clément Pit-Claudel. 2017. Editor support for F*. (April 2017). https:
//github.com/FStarLang/FStar/wiki/Editor-support-for-F*.

173

https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1007/BF01211456
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1109/ARITH.2011.40
https://d3js.org/
https://d3js.org/
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
http://adam.chlipala.net/frap/
https://doi.org/10.1007/978-3-540-68103-8_5
https://doi.org/10.1007/978-3-540-68103-8_5
https://css-tricks.com/the-checkbox-hack/
http://www.csl.sri.com/papers/wift-tutorial/
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1145/1052883.1052894
https://doi.org/10.1145/1052883.1052894
https://doi.org/10.1007/BF00116447
https://developers.redhat.com/blog/2016/06/27/a-common-interface-for-building-developer-tools/
https://developers.redhat.com/blog/2016/06/27/a-common-interface-for-building-developer-tools/
https://martinfowler.com/bliki/ProjectionalEditing.html
https://martinfowler.com/bliki/ProjectionalEditing.html
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://hal-mines-paristech.archives-ouvertes.fr/hal-01384408
https://doi.org/10.4204/EPTCS.239.2
https://docutils.sourceforge.io/docs/index.html
https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/BFb0000500
https://doi.org/10.1007/bfb0105406
https://doi.org/10.1007/bfb0105406
https://eprints.soton.ac.uk/403913/
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1007/s11784-012-0071-6
https://doi.org/10.1007/s11784-012-0071-6
https://github.com/EugeneLoy/coq_jupyter
https://github.com/EugeneLoy/coq_jupyter
https://math-comp.github.io/mcb/
https://doi.org/10.1145/567446.567450
https://doi.org/10.1145/567446.567450
https://softwarefoundations.cis.upenn.edu/
https://softwarefoundations.cis.upenn.edu/
https://github.com/cpitclaudel/coq-rst/
https://github.com/FStarLang/FStar/wiki/Editor-support-for-F*
https://github.com/FStarLang/FStar/wiki/Editor-support-for-F*

SLE ’20, November 16–17, 2020, Virtual, USA Clément Pit-Claudel

[39] Valentin Robert. 2018. Front-end tooling for building and maintaining
dependently-typed functional programs. Ph.D. Dissertation. UC San
Diego. https://escholarship.org/uc/item/9q3490fh

[40] Alan Schmitt. 2016. Documenting Coq Code using Org-mode. (June
2016). http://alan.petitepomme.net/tips/documenting_coq.html.

[41] Alan Schmitt. 2016. Executing Coq Code using Org-mode. (June 2016).
http://alan.petitepomme.net/tips/executing_coq.html.

[42] Ilya Sergey. 2014. Programs and Proofs: MechanizingMathematics with
Dependent Types. Lecture notes with exercises. https://ilyasergey.net/
pnp/.

[43] Martin Simons. 1997. Proof presentation for Isabelle. In Theorem
Proving in Higher Order Logics, Elsa L. Gunter and Amy Felty (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 259–274. https://doi.
org/10.1007/bfb0028399

[44] Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. In-
tentional Software. SIGPLAN Not. 41, 10 (Oct. 2006), 451–464. https:
//doi.org/10.1145/1167515.1167511

[45] Lisa M. C. Smith and Mansur H. Samadzadeh. 1991. An annotated
bibliography of literate programming. ACM SIGPLAN Notices 26, 1
(Jan 1991), 14–20. https://doi.org/10.1145/122203.122204

[46] Carst Tankink, Herman Geuvers, James McKinna, and Freek Wiedijk.
2010. Proviola: A Tool for Proof Re-animation. In Intelligent Com-
puter Mathematics, 10th International Conference, Paris, France, July
5-10, 2010. Proceedings. 440–454. https://doi.org/10.1007/978-3-642-
14128-7_37

[47] Enrico Tassi. 2018. Roundtrip. (2018). https://github.com/math-
comp/mcb/tree/master/roundtrip.

[48] The Coq Development Team. 2002. The Coq Proof Assistant: Refer-
ence Manual, version 7.2. Technical Report RT-0255. INRIA. 290 pages.
https://hal.inria.fr/inria-00069919

[49] The Coq Development Team. 2018. The Coq Proof Assistant: Reference
Manual, version 8.8.0. https://doi.org/10.5281/zenodo.1219885

[50] The Coq Development Team. 2020. The Coq Proof Assistant, version

8.11.0. https://doi.org/10.5281/zenodo.3744225
[51] Hendrik Tews. 2011. Proof tree visualization for Proof General. (April

2011). https://askra.de/software/prooftree/.
[52] Read the Docs. 2013. A markdown parser for docutils. (Aug. 2013).

https://github.com/readthedocs/recommonmark/.
[53] Andrzej Trybulec and Howard A. Blair. 1985. Computer Assisted Rea-

soning with MIZAR. In Proceedings of the 9th International Joint Con-
ference on Artificial Intelligence. Los Angeles, CA, USA, August 1985,
Aravind K. Joshi (Ed.). Morgan Kaufmann, 26–28. https://ijcai.org/
Proceedings/85-1/Papers/006.pdf

[54] Josef Urban. 2005. XML-izing Mizar: Making Semantic Processing
and Presentation of MML Easy. In Proceedings of the 4th International
Conference on Mathematical Knowledge Management (MKM ’05), Bre-
men, Germany, July 15-17, 2005. 346–360. https://doi.org/10.1007/
11618027_23

[55] Josef Urban and Grzegorz Bancerek. 2007. Presenting and Explaining
Mizar. Electronic Notes in Theoretical Computer Science 174, 2 (May
2007), 63–74. https://doi.org/10.1016/j.entcs.2006.09.022

[56] Antonetta J. M. van Gasteren. 1990. On the Shape of Mathemati-
cal Arguments. Springer Berlin Heidelberg. https://doi.org/10.1007/
bfb0020908

[57] Markus Wenzel. 1999. Isar — A Generic Interpretative Approach
to Readable Formal Proof Documents. In Theorem Proving in Higher
Order Logics, Yves Bertot, Gilles Dowek, Laurent Théry, André
Hirschowitz, and Christine Paulin (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 167–183. https://doi.org/10.1007/3-540-48256-
3_12

[58] Freek Wiedijk. 2001. Mizar Light for HOL Light. In Theorem Proving
in Higher Order Logics, Richard J. Boulton and Paul B. Jackson (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 378–393. https://doi.
org/10.1007/3-540-44755-5_26

[59] Jay Wilcox. 2014. Literate Coq Blogging. (Dec. 2014). https://github.
com/wilcoxjay/coq-lit.

174

https://escholarship.org/uc/item/9q3490fh
http://alan.petitepomme.net/tips/documenting_coq.html
http://alan.petitepomme.net/tips/executing_coq.html
https://ilyasergey.net/pnp/
https://ilyasergey.net/pnp/
https://doi.org/10.1007/bfb0028399
https://doi.org/10.1007/bfb0028399
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1145/122203.122204
https://doi.org/10.1007/978-3-642-14128-7_37
https://doi.org/10.1007/978-3-642-14128-7_37
https://github.com/math-comp/mcb/tree/master/roundtrip
https://github.com/math-comp/mcb/tree/master/roundtrip
https://hal.inria.fr/inria-00069919
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.5281/zenodo.3744225
https://askra.de/software/prooftree/
https://github.com/readthedocs/recommonmark/
https://ijcai.org/Proceedings/85-1/Papers/006.pdf
https://ijcai.org/Proceedings/85-1/Papers/006.pdf
https://doi.org/10.1007/11618027_23
https://doi.org/10.1007/11618027_23
https://doi.org/10.1016/j.entcs.2006.09.022
https://doi.org/10.1007/bfb0020908
https://doi.org/10.1007/bfb0020908
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-44755-5_26
https://doi.org/10.1007/3-540-44755-5_26
https://github.com/wilcoxjay/coq-lit
https://github.com/wilcoxjay/coq-lit

	Abstract
	1 Introduction
	2 A Tutorial
	3 Implementation
	3.1 The Core
	3.2 Document Transforms
	3.3 HTML Rendering
	3.4 Tangling and Untangling
	3.5 Docutils Integration

	4 Evaluation
	5 Related Work and Discussion
	5.1 Discussion
	5.2 Other Related Work

	6 Conclusion
	Acknowledgments
	A Advanced Rendering
	B Editor Support for Tangling and Untangling
	C Plain-HTML Rendering
	References

