
Automated Synthesis of Verified Firewalls
Shardul Chiplunkar

MIT CSAIL
Cambridge, Massachusetts, USA

shardulc@mit.edu

Clément Pit-Claudel
MIT CSAIL

Cambridge, Massachusetts, USA
cpitcla@csail.mit.edu

Adam Chlipala
MIT CSAIL

Cambridge, Massachusetts, USA
adamc@csail.mit.edu

Abstract
We demonstrate correct-by-construction firewalls—stateful packet
filters for TCP/IP packets—using the Fiat synthesis library [3]. We
present a general DSL for specifying their behavior independent
of algorithmic implementation. We outline the design of a verified
compiler in Coq, detail a few verified efficiency optimizations, and
show how the compiler can easily be extended to support custom
optimizations for user-defined policies.

Introduction
Firewalls (“any device, software, or arrangement or equipment that
limits network access” [2]) are ubiquitous in modern networked
devices. They implement security policies often specified in human-
readable DSLs, such as in the widespread iptables configuration tool
for Linux [5]. This paper focuses on firewalls that access TCP and
IP headers of packets to make a stateful (i.e. defined by previous
packets) allow/deny decision for each incoming packet, although
the possibility of payload-inspecting firewalls is not precluded. Our
DSL emulates some functionality of iptables.

Fiat is a Coq library that enables “decompos[ing] a program
into a high-level specification of its functionality and a sequence
of semantics-preserving optimizations that produces an efficient,
executable implementation” [3]. Fiat specifications are abstract
data types (ADTs) whose methods are implemented in the nonde-
terminism monad and can be refined into executable functional
programs. Crucially, the proof-producing synthesis process can be
almost entirely automated with Ltac scripts, as demonstrated in
the Query Structures database library supporting efficient SQL-like
operations [3] and the Narcissus library that synthesizes encoders
and decoders for binary formats [4]. We make use of both libraries
to specify and automatically synthesize firewalls in Fiat.

Firewalls are an apt domain for this approach to synthesis. The
simultaneous generation of code and proof provides an important
security guarantee, and automation shifts the burden of proof from
user to designer. Further, the separation of ADT specification and
implementation formalizes the intuitive distinction between a fire-
wall’s policies and actions reflected in existing configuration tools.

Specifying firewalls
We model our firewall as a monolithic device, separate from the
hosts on the network, that intercepts all traffic on the network. It
assumes that packets are provided to it as Coq records contain-
ing decoded TCP and IP fields, payload, and a measure ts of time
elapsed since the previous packet was received (implying a mono-
tonic clock); this assumption is fulfilled by Narcissus, and Delaware
et al. [4] provides more details on the specification of packets.

Given in Figure 1 is an initial specification1 of the firewall ADT,
parametric in fil, the actual packet-filtering logic. The internal
state (rep) is a database with schema PacketHistorySchema which

1The syntax is close to how it would be written in Coq but simplified for presentation.

Definition Firewall (fil: FilterType) :=

rep := QueryStructure PacketHistorySchema,

Def Constructor "Init" : rep := empty,,

Def Method "Filter" (r: rep) (inp: packet) :=

ts inp’ <- latest <- Max (For (t in r!"History")

Return t!"Timestamp");

ret (latest + (ts inp));

res <- fil r inp’;

r <- Insert inp’ into r!"History";

ret (r, res).

Figure 1. Modeling firewalls as ADTs.

Definition ExampleFilter (r: _) (inp: packet) :=

c <- Count in r in last 1000 ticks (fun p =>

(iptables --destination-port 8 --source p.src) inp);

If (c <? 10) Then <ACCEPT> Else <DROP>.

Definition ExampleFirewall := Firewall ExampleFilter.

Figure 2. An example firewall specification in our DSL.

specifies a single table, “History”, with two columns, “Timestamp”
and “Packet”. Upon receiving a packet, the firewall computes the
cumulative timestamp, the stateful allow/deny decision, and the
updated state, and returns the latter two. Figure 2 is an example of
how a simple stateful firewall might be specified in our DSL.

Note that we make ample use of Coq notations, including those
included in Fiat for the nondeterminism monad (bind <- and re-
turn ret), ADTs, and the Query Structures library. We define no-
tations that emulate iptables syntax for packet predicates (e.g. the
--source flag) and capture common specification patterns like
‘count packets in last n ticks that match [...]’.

Synthesizing firewalls
Synthesizing ExampleFirewall from Figure 2 into an executable
firewall is relatively straightforward, due to the automated proof
tools included with the Query Structures library that produce veri-
fied implementations of database operations (Max, Insert, Count).
Everything in the specification that is not a database operation is
already a stateless, deterministic computation.

However, the code thus synthesized is very inefficient. Before
we address the major inefficiencies, let us work through a simple
optimization that illustrates our general process.

Instead of repeatedly querying the History table for the max-
imum timestamp, we could cache it in the internal state and up-
date it for each incoming packet. We define a relation between
the existing state (rep: QueryStructure [...]) and a new (rep’:



Shardul Chiplunkar, Clément Pit-Claudel, and Adam Chlipala

QueryStructure [...] * nat), in which rep = (fst rep’) and
the Max query over rep is ‘refined’ by returning (snd rep’). (B
refines A if the range of B’s behaviors is a subset of that of A in
Fiat’s computation monad.)

Next, we prove a theorem that if rep and rep’ satisfy this rela-
tion, then we can refine the original firewall specification into one
that uses and updates the cached timestamp by finite differencing,
preserving the relation. And finally, with some Ltac additions to
the database-synthesis automation, we can apply this refinement
theorem to any firewall, effecting the corresponding changes in the
synthesized code.

Column reduction
Recall that the PacketHistorySchema specifies that the History ta-
ble has two columns, “Timestamp” and “Packet”, but a firewall may
not need the entire contents of every packet. We can significantly
improve efficiency by simply not storing packet fields that the fire-
wall will never access. We call this optimization “column reduction”.
Like timestamp caching, column reduction applies to any firewall
regardless of its filtering logic.

The refinement relation for column reduction states that the new
History is a projection of the old one retaining only specific packet
fields instead of the entire “Packet”, and the refinement theorem
states that this change of database schema preserves the filtering
logic. This theorem is automatically proved at compile time with
Ltac scripts, unlike the cached timestamp example whose proof is
included in the library, because which fields the projection retains
depends on the specifics of the firewall. The proof effort here lies
in a robust and readable set of Ltac scripts built into the default
firewall derivation; extending this optimization to, say, UDP packet
fields would only require adding a list of field names and accessor
functions to an internal tactic.

Lastly, we point out that column reduction is limited to purely
syntactic inference of unused fields. It is sound but not complete
(e.g. does not detect semantically irrelevant fields).

Row reduction
A firewall as specified maintains an arbitrarily large history of
every packet received because we want to allow the expression of
policies with arbitrarily longmemory. But, when instantiated with a
particular policy, we can reduce space and time requirements by not
storing rows that the firewall will never access. We present three
useful refinements for common patterns of this “row reduction”
optimization. All three use much more complex proofs than column
reduction and are more specific to syntactic patterns of firewall
definition. We thus believe that proving a variety of such context-
driven refinements will be more fruitful than attempting a general
technique as for column reduction.

The first is applicable when the firewall specification has an
explicit bound on the history it accesses, as in ExampleFirewall in
Figure 2. If the only query performed by the firewall accesses only
the last n ticks, then the firewall will have the same behavior if, on
every Insert, it deletes all rows older than n ticks. This refinement
is a proven theorem which the compiler can automatically apply if
the firewall is in the expected syntactic form.

A second opportunity for row reduction is when the firewall’s
only query checks for the existence of a packet p in History satis-
fying predicate (P p inp) where inp is the incoming packet (for
example, whether p and inp have the same source address). If we

have a (not necessarily injective) projection f such that for all inp,
(P p inp) iff (P (f p) inp), then the firewall will maintain its
behavior if it only stores inp when there is no packet p in History
such that (f p) = (f inp). (In our example, an f that retains only
the source address would work, so that only packets with unique
source addresses would be stored.) Here, the refinement is a proven
theorem in the automation library, but a suitable projection f is
determined at compile-time very similarly to column reduction.

The third heuristic generalizes the timestamp-caching optimiza-
tion to database queries of the form, ‘return (g p) for the latest
packet p that satisfies some predicate’. The refinement is to add
a “Cache” table to the database where the keys are projections of
packets that preserve the query predicate (as in the previous para-
graph) and the values are the corresponding g values. The relevant
proofs and automation are still in development.

Extensibility
A benefit of our approach is that it is easy to support DSL extensions
with custom compiler optimizations. We present ongoing work
in the case study of a rate-limiting firewall that does not allow
more than n packets in any window of k ticks. We remark that we
introduce nondeterminism here by not specifying a decision if a
window has fewer than n packets. Accepting packets in that case
based on a Count is permissible, as is denying all packets.

We wish to implement rate limiting using a token bucket filter
(TBF) (see iptables’ TBF-based ‘limit’ module [1]). A TBF acquires
r tokens per tick (‘rate’) up to a maximum of b tokens (‘burst’).
Upon receiving a packet, if there are any tokens in the bucket, one
is removed and the packet is allowed; else it is denied. One can
see that no more than (rk + b) packets will ever be allowed in any
window of k ticks, so a TBF with suitable values of r and b would
refine our specification of a rate-limiting firewall. Importantly, it
eliminates an expensive database in favor of a mere counter.

We expect to be able to prove the TBF refinement and automate
its application in the same manner as other optimizations.

Conclusion and future work
Using the Fiat library for ADT synthesis, we have demonstrated a
DSL and compiler for correct-by-construction firewalls. A range of
compiler optimizations enable reasonably efficient implementation
without sacrificing correctness. Additionally, our design makes it
easy to support new behaviors and optimizations.

Beyond completing the development of the generalized-caching
and rate-limiting optimizations, some work is needed to be able to
synthesize firewalls for practical use. First and foremost is to build
robust proof automation that ties together the various optimization
proofs and Ltac scripts. Our goal is to produce a single user-facing
tactic that performs the required sequence of refinements for any
firewall in the DSL to produce correct code, applying optimizations
whenever possible. Second, our DSL can certainly be made more
natural and usable for common firewall patterns.

Future work could greatly expand the practical scope of firewalls
by adding new optimizations and enabling their composition. For
instance, we might be able to refine certain Count queries into ac-
cessing a table of counters instead of a database, composing this
with rate limiting for source-specific rate limiting. Another possi-
bility is to use column reduction to avoid decoding unnecessary
packet fields at the interface level (e.g. in Narcissus).



Automated Synthesis of Verified Firewalls

Acknowledgements
This work was supported by the Paul E. Gray UROP Fund and by
DARPA under agreement number FA8750-16-C-0007. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

References
[1] [n.d.]. Ubuntu Manpage: iptables – administration tool for IPv4 packet filtering

and NAT. Retrieved Oct. 18, 2020 from https://manpages.ubuntu.com/manpages/
precise/en/man8/iptables.8.html

[2] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin. 2003. Firewalls and
Internet Security: Repelling theWily Hacker (2nd ed.). Addison-Wesley Professional.

[3] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015.
Fiat: Deductive Synthesis of Abstract Data Types in a Proof Assistant. In POPL’15:
Proceedings of the 42ndACMSIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (Mumbai, India). http://adam.chlipala.net/papers/FiatPOPL15/

[4] Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye, and
Adam Chlipala. 2019. Narcissus: Correct-By-Construction Derivation of Decoders
and Encoders from Binary Formats. In ICFP’19: Proceedings of the 24th ACM
SIGPLAN International Conference on Functional Programming (Berlin, Germany).
http://adam.chlipala.net/papers/NarcissusICFP19/

[5] netfilter Core Team. [n.d.]. netfilter: firewalling, NAT, and packet mangling for
linux. Retrieved Sep. 18, 2020 from https://netfilter.org/

https://manpages.ubuntu.com/manpages/precise/en/man8/iptables.8.html
https://manpages.ubuntu.com/manpages/precise/en/man8/iptables.8.html
http://adam.chlipala.net/papers/FiatPOPL15/
http://adam.chlipala.net/papers/NarcissusICFP19/
https://netfilter.org/

	Abstract
	References

